首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The uvsC gene of Aspergillus nidulans is a homolog of the RAD51 gene of Saccharomyces cerevisiae. However, with respect to its effects on UV mutagenesis, it differs from the yeast gene, since it seems to be required for UV mutagenesis; however, this conclusion is based only on data from resting conidia. To further clarify the functional role of the uvsC gene, we tested the UV mutability of strains bearing a uvsC mutation in resting as well as in germinating conidia, by the p-fluoro-phenyl-alanine resistance test. We also evaluated the mutability of the uvsE mutant which belongs to the same epistatic group. Our results show that the uvsC and uvsE genes do not have a significant role in the mutagenic UV-repair pathway.  相似文献   

2.
Yoo S  McKee BD 《DNA Repair》2005,4(2):231-242
Rad51 is a crucial enzyme in DNA repair, mediating the strand invasion and strand exchange steps of homologous recombination (HR). Mutations in the Drosophila Rad51 gene (spn-A) disrupt somatic as well as meiotic double-strand break (DSB) repair, similar to fungal Rad51 genes. However, the sterility of spn-A mutant females prevented a thorough analysis of the role of Rad51 in meiosis. In this study, we generated transgenic animals that express spn-A dsRNA under control of an inducible promoter, and examined the effects of inhibiting expression of spn-A on DNA repair, meiotic recombination and meiotic chromosome pairing and segregation. We found that depletion of spn-A mRNA had no effect on the viability of non-mutagen-treated transgenic animals but greatly reduced the survival of larvae that were exposed to the radiomimetic drug MMS, in agreement with the MMS and X-ray sensitivity of spn-A mutant animals. We also found that increases in dose of spn-A gene enhanced larval resistance to MMS exposure, suggesting that at high damage levels, Rad51 protein levels may be limiting for DNA repair. spn-A RNAi strongly stimulated X-X nondisjunction and decreased recombination along the X in female meiosis, consistent with a requirement of Rad51 in meiotic recombination. However, neither RNAi directed against the spn-A mRNA nor homozygosity for a spn-A null mutation had any effect on male fertility or on X-Y segregation in male meiosis, indicating that Rad51 likely plays no role in male meiotic chromosome pairing. Our results support a central role for Rad51 in HR in both somatic and meiotic DSB repair, but indicate that Rad51 in Drosophila is dispensable for meiotic chromosome pairing. Our results also provide the first demonstration that RNAi can be used to inhibit the functions of meiotic genes in Drosophila.  相似文献   

3.
Two genes of Aspergillus nidulans are known to function in UV mutagenesis, but have been assigned to different epistasis groups: uvsC, which is also required for meiosis and mitotic recombination, and uvsI, which may have no other function. To clarify their role in error-prone repair and to investigate their interaction, uvsI and uvsC single and uvsI;uvsC double mutant strains were further tested for mutagen sensitivities and characterized for effects on mutation. Spontaneous and induced frequencies were compared in forward and reverse mutation assays. All results confirmed that uvsI and uvsC are members of different epistasis groups, and demonstrated that these uvs mutants have very different defects in UV mutagenesis. The uvsI strains showed wild-type frequencies in all forward mutation tests, but greatly reduced spontaneous and UV-induced reversion of some, but not other, point mutations. In contrast, uvsC had similar effects in all assay systems: namely pronounced mutator effects and greatly reduced UV mutagenesis. Interestingly, the uvsI;uvsC double mutant strains differed from both single mutants; they clearly showed synergism for all types of reversion tested: none were ever obtained spontaneously, nor after induction by UV or EMS (ethylmethane sulfonate). Based on these results, we conclude that uvsI is active in a mutation-specific, specialized error-prone repair process in Aspergillus. In contrast, uvsC, which is now known to show sequence homology to recA, has a basic function in mutagenic UV repair in addition to recombinational repair, similar to recA of Escherichia coli.  相似文献   

4.
The uvsC gene of Aspergillus nidulans is a homolog of the RAD51 gene of Saccharomyces cerevisiae. However, with respect to its effects on UV mutagenesis, it differs from the yeast gene, since it seems to be required for UV mutagenesis; however, this conclusion is based only on data from resting conidia. To further clarify the functional role of the uvsC gene, we tested the UV mutability of strains bearing a uvsC mutation in resting as well as in germinating conidia, by the p-fluoro-phenyl-alanine resistance test. We also evaluated the mutability of the uvsE mutant which belongs to the same epistatic group. Our results show that the uvsC and uvsE genes do not have a significant role in the mutagenic UV-repair pathway. Received: 20 January 1998 / Accepted: 22 April 1998  相似文献   

5.
Two genes of Aspergillus nidulans are known to function in UV mutagenesis, but have been assigned to different epistasis groups: uvsC, which is also required for meiosis and mitotic recombination, and uvsI, which may have no other function. To clarify their role in error-prone repair and to investigate their interaction, uvsI and uvsC single and uvsI;uvsC double mutant strains were further tested for mutagen sensitivities and characterized for effects on mutation. Spontaneous and induced frequencies were compared in forward and reverse mutation assays. All results confirmed that uvsI and uvsC are members of different epistasis groups, and demonstrated that these uvs mutants have very different defects in UV mutagenesis. The uvsI strains showed wild-type frequencies in all forward mutation tests, but greatly reduced spontaneous and UV-induced reversion of some, but not other, point mutations. In contrast, uvsC had similar effects in all assay systems: namely pronounced mutator effects and greatly reduced UV mutagenesis. Interestingly, the uvsI;uvsC double mutant strains differed from both single mutants; they clearly showed synergism for all types of reversion tested: none were ever obtained spontaneously, nor after induction by UV or EMS (ethylmethane sulfonate). Based on these results, we conclude that uvsI is active in a mutation-specific, specialized error-prone repair process in Aspergillus. In contrast, uvsC, which is now known to show sequence homology to recA, has a basic function in mutagenic UV repair in addition to recombinational repair, similar to recA of Escherichia coli. Received: 23 September 1996 / Accepted: 2 December 1996  相似文献   

6.
An essential role of DmRad51/SpnA in DNA repair and meiotic checkpoint control   总被引:13,自引:0,他引:13  
Rad51 is a conserved protein essential for recombinational repair of double-stranded DNA breaks (DSBs) in somatic cells and during meiosis in germ cells. Yeast Rad51 mutants are viable but show meiosis defects. In the mouse, RAD51 deletions cause early embryonic death, suggesting that in higher eukaryotes Rad51 is required for viability. Here we report the identification of SpnA as the Drosophila Rad51 gene, whose sequence among the five known Drosophila Rad51-like genes is most closely related to the Rad51 homologs of human and yeast. DmRad51/spnA null mutants are viable but oogenesis is disrupted by the activation of a meiotic recombination checkpoint. We show that the meiotic phenotypes result from an inability to effectively repair DSBs. Our study further demonstrates that in Drosophila the Rad51-dependent homologous recombination pathway is not essential for DNA repair in the soma, unless exposed to DNA damaging agents. We therefore propose that under normal conditions a second, Rad51-independent, repair pathway prevents the lethal effects of DNA damage.  相似文献   

7.
Interhomolog recombination plays a critical role in promoting proper meiotic chromosome segregation but a mechanistic understanding of this process is far from complete. In vegetative cells, Rad51 is a highly conserved recombinase that exhibits a preference for repairing double strand breaks (DSBs) using sister chromatids, in contrast to the conserved, meiosis-specific recombinase, Dmc1, which preferentially repairs programmed DSBs using homologs. Despite the different preferences for repair templates, both Rad51 and Dmc1 are required for interhomolog recombination during meiosis. This paradox has recently been explained by the finding that Rad51 protein, but not its strand exchange activity, promotes Dmc1 function in budding yeast. Rad51 activity is inhibited in dmc1Δ mutants, where the failure to repair meiotic DSBs triggers the meiotic recombination checkpoint, resulting in prophase arrest. The question remains whether inhibition of Rad51 activity is important during wild-type meiosis, or whether inactivation of Rad51 occurs only as a result of the absence of DMC1 or checkpoint activation. This work shows that strains in which mechanisms that down-regulate Rad51 activity are removed exhibit reduced numbers of interhomolog crossovers and noncrossovers. A hypomorphic mutant, dmc1-T159A, makes less stable presynaptic filaments but is still able to mediate strand exchange and interact with accessory factors. Combining dmc1-T159A with up-regulated Rad51 activity reduces interhomolog recombination and spore viability, while increasing intersister joint molecule formation. These results support the idea that down-regulation of Rad51 activity is important during meiosis to prevent Rad51 from competing with Dmc1 for repair of meiotic DSBs.  相似文献   

8.
Rad51 is crucial not only in homologous recombination and recombinational repair but also in normal cellular growth. To address the role of Rad51 in normal cell growth we investigated morphological changes of cells after overexpression of wild-type and a dominant negative form of Rad51 in fission yeast. Rhp51, a Rad51 homolog in Schizosaccharomyces pombe, has a highly conserved ATP-binding motif. Rhp51 K155A, which has a single substitution in this motif, failed to rescue hypersensitivity of a rhp51Δ mutant to methyl methanesulfonate (MMS) and UV, whereas it binds normally to Rhp51 and Rad22, a Rad52 homolog. Two distinct cellular phenotypes were observed when Rhp51 or Rhp51 K155A was overexpressed in normal cells. Overexpression of Rhp51 caused lethality in the absence of DNA-damaging agents, with acquisition of a cell cycle mutant phenotype and accumulation of a 1C DNA population. On the other hand, overexpression of Rhp51 K155A led to a delay in G2 with decondensed nuclei, which resembled the phenotype of rhp51Δ. The latter also exhibited MMS and UV sensitivity, indicating that Rhp51 K155A has a dominant negative effect. These results suggest an association between DNA replication and Rad51 function.  相似文献   

9.
10.
The fission yeast plc1 + gene encodes phosphoinositide-specific phospholipase C. The two- hybrid interaction assay with plexA-plc1 + as a bait revealed that Plc1p interacted with the 14-3-3 proteins Rad24p and Rad25p. Formation of a complex containing Plc1p and Rad24p in vivo was confirmed by an immunological method. As predicted from the fact that rad24 null mutant cells are hypersensitive to UV irradiation, plc1 null mutant cells were almost as sensitive to UV irradiation as rad24 null mutant cells. In addition, deletion of rad24 in the plc1 null mutant cells did not enhance the UV sensitivity, indicating that plc1 + and rad24 + belong to the same epistasis group with respect to UV sensitivity. Whereas Rad24p has been reported to be involved in the DNA damage checkpoint pathway, the delay to mitosis after UV irradiation was not defective either in rad24 null mutant cells or in plc1 null mutant cells in our analysis. Thus, Plc1p is responsible for resistance to UV irradiation, but not for the DNA damage checkpoint pathway, in cooperation with 14-3-3 proteins.  相似文献   

11.
Here we report identification of the lkh1 gene encoding a LAMMER kinase homolog (Lkh1) from a screen for DNA repair-deficient mutants in Ustilago maydis. The mutant allele isolated results from a mutation at glutamine codon 488 to a stop codon that would be predicted to lead to truncation of the carboxy-terminal kinase domain of the protein. This mutant (lkh1Q488*) is highly sensitive to ultraviolet light, methyl methanesulfonate, and hydroxyurea. In contrast, a null mutant (lkh1Δ) deleted of the entire lkh1 gene has a less severe phenotype. No epistasis was observed when an lkh1Q488* rad51Δ double mutant was tested for genotoxin sensitivity. However, overexpressing the gene for Rad51, its regulator Brh2, or the Brh2 regulator Dss1 partially restored genotoxin resistance of the lkh1Δ and lkh1Q488* mutants. Deletion of lkh1 in a chk1Δ mutant enabled these double mutant cells to continue to cycle when challenged with hydroxyurea. lkh1Δ and lkh1Q488* mutants were able to complete the meiotic process but exhibited reduced heteroallelic recombination and aberrant chromosome segregation. The observations suggest that Lkh1 serves in some aspect of cell cycle regulation after DNA damage or replication stress and that it also contributes to proper chromosome segregation in meiosis.  相似文献   

12.

Proper repair of double-strand breaks (DSBs) is key to ensure proper chromosome segregation. In this study, we found that the deletion of the SRS2 gene, which encodes a DNA helicase necessary for the control of homologous recombination, induces aberrant chromosome segregation during budding yeast meiosis. This abnormal chromosome segregation in srs2 cells accompanies the formation of a novel DNA damage induced during late meiotic prophase I. The damage may contain long stretches of single-stranded DNAs (ssDNAs), which lead to aggregate formation of a ssDNA binding protein, RPA, and a RecA homolog, Rad51, as well as other recombination proteins inside of the nuclei, but not that of a meiosis-specific Dmc1. The Rad51 aggregate formation in the srs2 mutant depends on the initiation of meiotic recombination and occurs in the absence of chromosome segregation. Importantly, as an early recombination intermediate, we detected a thin bridge of Rad51 between two Rad51 foci in the srs2 mutant, which is rarely seen in wild type. These might be cytological manifestation of the connection of two DSB ends and/or multi-invasion. The DNA damage with Rad51 aggregates in the srs2 mutant is passed through anaphases I and II, suggesting the absence of DNA damage-induced cell cycle arrest after the pachytene stage. We propose that Srs2 helicase resolves early protein-DNA recombination intermediates to suppress the formation of aberrant lethal DNA damage during late prophase I.

  相似文献   

13.
The Aspergillus nidulans uvsC gene was identified as a homolog of RAD51 and recA of Saccharomyces cerevisiae and Escherichia coli, respectively, whose role in genetic recombination and recombinational repair has been extensively studied. Like many other filamentous fungi, A. nidulans shows no bias towards either homologous or ectopic integration of exogenous DNA. Therefore it is a unique and useful organism for the study of the mechanisms of DNA integration. Homologous integration of a 1.7-kb argB gene was not detected in 50 transformants obtained from a uvsC null mutant. In contrast, the frequency of homologous integration in uvsC+ control strains varied from 41 to 86%. Another feature observed with the uvsC null mutant was that an increased number of transformants had undergone ectopic integrations at multiple sites in the genome. These results are consistent with the established function of Rad51/RecA, and further indicate the involvement of redundant pathways in integration of exogenous DNA. This study provides direct evidence for the involvement of uvsC in exogenous DNA integration and should contribute to the improvement of genetic manipulations in general, but particularly in fungi.  相似文献   

14.
The discovery of three Rad51 paralogs in Saccharomyces cerevisiae (Rad55, Rad57, and Dmc1), four in Schizosaccharomyces pombe (Rhp55, Rhp57, Rlp1, and Dmc1), and six in human (Rad51B, Rad51C, Rad51D, Xrcc2, Xrcc3, and Dmc1) indicate the functional diversity and specialization of RecA-like proteins in the line from the lower to higher organisms. This paper reports characterization of a number of mitotic and meiotic phenotypes of the cells mutant in rlp1 gene, encoding a paralog of Rad51, in fission yeasts. No evident role of Rlp1 protein in the repair of spontaneous lesions emerging during mating type switching was found. Rlp1 does not interact physically with Dmc1. An elevated expression of rhp51 has a dominant negative effect on the cell survivability of rlp1Δ mutant exposed to a DNA-damaging agent. We assume that Rlp1 acts at the stages of recombination connected with disassembling of the nucleoprotein filament formed by Rhp51 protein.  相似文献   

15.
Homologous recombination (HR) is critical for DNA double-strand break (DSB) repair and genome stabilization. In yeast, HR is catalyzed by the Rad51 strand transferase and its “mediators,” including the Rad52 single-strand DNA-annealing protein, two Rad51 paralogs (Rad55 and Rad57), and Rad54. A Rad51 homolog, Dmc1, is important for meiotic HR. In wild-type cells, most DSB repair results in gene conversion, a conservative HR outcome. Because Rad51 plays a central role in the homology search and strand invasion steps, DSBs either are not repaired or are repaired by nonconservative single-strand annealing or break-induced replication mechanisms in rad51Δ mutants. Although DSB repair by gene conversion in the absence of Rad51 has been reported for ectopic HR events (e.g., inverted repeats or between plasmids), Rad51 has been thought to be essential for DSB repair by conservative interchromosomal (allelic) gene conversion. Here, we demonstrate that DSBs stimulate gene conversion between homologous chromosomes (allelic conversion) by >30-fold in a rad51Δ mutant. We show that Rad51-independent allelic conversion and break-induced replication occur independently of Rad55, Rad57, and Dmc1 but require Rad52. Unlike DSB-induced events, spontaneous allelic conversion was detected in both rad51Δ and rad52Δ mutants, but not in a rad51Δ rad52Δ double mutant. The frequencies of crossovers associated with DSB-induced gene conversion were similar in the wild type and the rad51Δ mutant, but discontinuous conversion tracts were fivefold more frequent and tract lengths were more widely distributed in the rad51Δ mutant, indicating that heteroduplex DNA has an altered structure, or is processed differently, in the absence of Rad51.  相似文献   

16.
The SRS2 (Suppressor of RAD Six screen mutant 2) gene encodes an ATP-dependent DNA helicase that regulates homologous recombination in Saccharomyces cerevisiae. Mutations in SRS2 result in a hyper-recombination phenotype, sensitivity to DNA damaging agents and synthetic lethality with mutations that affect DNA metabolism. Several of these phenotypes can be suppressed by inactivating genes of the RAD52 epistasis group that promote homologous recombination, implicating inappropriate recombination as the underlying cause of the mutant phenotype. Consistent with the genetic data, purified Srs2 strongly inhibits Rad51-mediated recombination reactions by disrupting the Rad51-ssDNA presynaptic filament. Srs2 interacts with Rad51 in the yeast two-hybrid assay and also in vitro. To investigate the functional relevance of the Srs2-Rad51 complex, we have generated srs2 truncation mutants that retain full ATPase and helicase activities, but differ in their ability to interact with Rad51. Importantly, the srs2 mutant proteins attenuated for Rad51 interaction are much less capable of Rad51 presynaptic filament disruption. An internal deletion in Srs2 likewise diminishes Rad51 interaction and anti-recombinase activity. We also present evidence that deleting the Srs2 C-terminus engenders a hyper-recombination phenotype. These results highlight the importance of Rad51 interaction in the anti-recombinase function of Srs2, and provide evidence that this Srs2 function can be uncoupled from its helicase activity.  相似文献   

17.

We investigated the meiotic role of Srs2, a multi-functional DNA helicase/translocase that destabilises Rad51-DNA filaments and is thought to regulate strand invasion and prevent hyper-recombination during the mitotic cell cycle. We find that Srs2 activity is required for normal meiotic progression and spore viability. A significant fraction of srs2 mutant cells progress through both meiotic divisions without separating the bulk of their chromatin, although in such cells sister centromeres often separate. Undivided nuclei contain aggregates of Rad51 colocalised with the ssDNA-binding protein RPA, suggesting the presence of persistent single-strand DNA. Rad51 aggregate formation requires Spo11-induced DSBs, Rad51 strand-invasion activity and progression past the pachytene stage of meiosis, but not the DSB end-resection or the bias towards interhomologue strand invasion characteristic of normal meiosis. srs2 mutants also display altered meiotic recombination intermediate metabolism, revealed by defects in the formation of stable joint molecules. We suggest that Srs2, by limiting Rad51 accumulation on DNA, prevents the formation of aberrant recombination intermediates that otherwise would persist and interfere with normal chromosome segregation and nuclear division.

  相似文献   

18.
Tsutsui Y  Morishita T  Iwasaki H  Toh H  Shinagawa H 《Genetics》2000,154(4):1451-1461
To identify Schizosaccharomyces pombe genes involved in recombination repair, we identified seven mutants that were hypersensitive to both methyl methanesulfonate (MMS) and gamma-rays and that contained mutations that caused synthetic lethality when combined with a rad2 mutation. One of the mutants was used to clone the corresponding gene from a genomic library by complementation of the MMS-sensitive phenotype. The gene obtained encodes a protein of 354 amino acids whose sequence is 32% identical to that of the Rad57 protein of Saccharomyces cerevisiae. An rhp57 (RAD57 homolog of S. pombe) deletion strain was more sensitive to MMS, UV, and gamma-rays than the wild-type strain and showed a reduction in the frequency of mitotic homologous recombination. The MMS sensitivity was more severe at lower temperature and was suppressed by the presence of a multicopy plasmid bearing the rhp51 gene. An rhp51 rhp57 double mutant was as sensitive to UV and gamma-rays as an rhp51 single mutant, indicating that rhp51 function is epistatic to that of rhp57. These characteristics of the rhp57 mutants are very similar to those of S. cerevisiae rad57 mutants. Phylogenetic analysis suggests that Rhp57 and Rad57 are evolutionarily closest to human Xrcc3 of the RecA/Rad51 family of proteins.  相似文献   

19.
20.
During meiosis, the homologous chromosomes pair and recombine. An evolutionarily conserved protein structure, the synaptonemal complex (SC), is located along the paired meiotic chromosomes. We have studied the function of a structural component in the axial/lateral element of the SC, the synaptonemal complex protein 3 (SCP3). A null mutation in the SCP3 gene was generated, and we noted that homozygous mutant males were sterile due to massive apoptotic cell death during meiotic prophase. The SCP3-deficient male mice failed to form axial/lateral elements and SCs, and the chromosomes in the mutant spermatocytes did not synapse. While the absence of SCP3 affected the nuclear distribution of DNA repair and recombination proteins (Rad51 and RPA), as well as synaptonemal complex protein 1 (SCP1), a residual chromatin organization remained in the mutant meiotic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号