首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IS511 is an endogenous insertion sequence (IS) of the bacterium Caulobactercrescentus strain CB15 and it is the first Caulobacter IS to be characterized at the molecular level. We determined the 1266-bp nucleotide sequence of IS511 and investigated its genetic organization, relationship to other ISs, and transposition properties. IS511 belongs to a distinct branch of the IS3 family that includes ISRI, IS476, and IS1222, based on nucleotide sequence similarity. The nucleotide sequence of IS511 encodes open reading frames (orfs) designated here as orfA and orfB, and their relative organization and amino acid sequences of the predicted protein products are very similar to those of orfAs and orfBs of other IS3 family members. Nuclease S1 protection assays identified an IS511 RNA, and its 5′ end maps approximately 16 nucleotides upstream of orfA and about six nucleotides downstream of a sequence that is similar to the consensus sequence of C. crescentus housekeeping promoters. Evidence is presented that IS511 is capable of precise excision from the chromosome, and transposition from the chromosome to a plasmid. Transpositional insertions of IS511 occurred within sequences with a relatively high G + C content, and they were usually, but not always, flanked by a 4-bp direct repeat that matches a sequence at the site of insertion. We also determined the nucleotide sequence flanking the four endogenous IS511 elements that reside in the chromosome of C. crescentus. Our findings demonstrate that IS511 is a transposable IS that belongs to a branch of the IS3 family. Received: 18 August 1996 / Accepted: 17 September 1996  相似文献   

2.
IS911 is a bacterial insertion sequence composed of two consecutive overlapping open reading frames (ORFs [orfA and orfB]) encoding the transposase (OrfAB) as well as a regulatory protein (OrfA). These ORFs are bordered by terminal left and right inverted repeats (IRL and IRR, respectively) with several differences in nucleotide sequence. IS911 transposition is asymmetric: each end is cleaved on one strand to generate a free 3′-OH, which is then used as the nucleophile in attacking the opposite insertion sequence (IS) end to generate a free IS circle. This will be inserted into a new target site. We show here that the ends exhibit functional differences which, in vivo, may favor the use of one compared to the other during transposition. Electromobility shift assays showed that a truncated form of the transposase [OrfAB(1-149)] exhibits higher affinity for IRR than for IRL. While there was no detectable difference in IR activities during the early steps of transposition, IRR was more efficient during the final insertion steps. We show here that the differential activities between the two IRs correlate with the different affinities of OrfAB(1-149) for the IRs during assembly of the nucleoprotein complexes leading to transposition. We conclude that the two inverted repeats are not equivalent during IS911 transposition and that this asymmetry may intervene to determine the ordered assembly of the different protein-DNA complexes involved in the reaction.  相似文献   

3.
Here we describe ISHp609 of Helicobacter pylori, a new member of the IS605 mobile element family that is novel and contains two genes whose functions are unknown, jhp960 and jhp961, in addition to homologs of two other H. pylori insertion sequence (IS) element genes, orfA, which encodes a putative serine recombinase-transposase, and orfB, whose homologs in other species are also often annotated as genes that encode transposases. The complete four-gene element was found in 10 to 40% of strains obtained from Africa, India, Europe, and the Americas but in only 1% of East Asian strains. Sequence comparison of 10 representative ISHp609 elements revealed higher levels of DNA sequence matches (99%) than those seen in normal chromosomal genes (88 to 98%) or in other IS elements (95 to 97% for IS605, IS606, and IS607) from the same H. pylori populations. Sequence analysis suggested that ISHp609 can insert at many genomic sites with its left end preferentially next to TAT, with no target specificity for its right end, and without duplicating or deleting target sequences. A deleted form of ISHp609, containing just jhp960 and jhp961 and 37 bp of orfA, found in reference strain J99, was at the same chromosomal site in 15 to 40% of the strains from many geographic regions but again in only 1% of the East Asian strains. The abundance and sequence homogeneity of ISHp609 and of this nonmobile remnant suggested a recent bottleneck and then rapid spread in H. pylori populations, possibly selected by the contributions of the elements to bacterial fitness.  相似文献   

4.
ISPst9 is an ISL3-like insertion sequence (IS) that was recently described in the naphthalene-degrading organism Pseudomonas stutzeri strain AN10. In this paper we describe a novel strong IS regulation stimulus; transposition of ISPst9 is induced in all P. stutzeri AN10 cells after conjugative interaction with Escherichia coli. Thus, we observed that in all P. stutzeri AN10 cells that received genetic material by conjugation the ISPst9 genomic dose and/or distribution was changed. Furthermore, ISPst9 transposition was also observed when P. stutzeri AN10 cells were put in contact with the plasmidless conjugative strain E. coli S17-1λpir, but not when they were put in contact with E. coli DH5α (a nonconjugative strain). The mechanism of ISPst9 transposition was analyzed, and transposition was shown to proceed by excision from the donor DNA using a conservative mechanism, which generated 3- to 10-bp deletions of the flanking DNA. Our results indicate that ISPst9 transposes, forming double-stranded DNA circular intermediates consisting of the IS and a 5-bp intervening DNA sequence probably derived from the ISPst9 flanking regions. The kinetics of IS circle formation are also described.  相似文献   

5.
We have determined the nucleotide sequence of IS427, an insertion sequence fromAgrobacterium tumefaciens T37. IS427 is 1271 bp long, contains 16-bp imperfect terminal inverted repeats, and generates a 2-bp target sequence duplication. It is present at three sites in the pTiT37 plasmid and is absent from the chromosome ofA. tumefaciens T37. Each of the IS427 elements sequenced was near a site with sequence homology to integration host factor (IHF)-binding sites which suggested that IHF may be involved in IS427 transposition.  相似文献   

6.
An efficient and quantitative method to analyze the transposition of various insertion sequence (IS) elements in Burkholderia multivorans ATCC 17616 was devised. pGEN500, a plasmid carrying a Bacillus subtilis-derived sacB gene, was introduced into ATCC 17616 cells, and 25% of their sucrose-resistant derivatives were found to carry various IS elements on pGEN500. A PCR-based experimental protocol, in which a mixture of several specific primer pairs was used, revealed that pGEN500 captured, in addition to five previously reported IS elements (IS401, IS402, IS406, IS407, and IS408), three novel IS elements, ISBmu1, ISBmu2, and ISBmu3. The global transposition frequency of these IS elements was enhanced more than sevenfold under a high-temperature condition (42°C) but not under oxidative stress or starvation conditions. To our knowledge, this is the first report demonstrating the elevated transposition activities of several IS elements at a high temperature. The efficient experimental protocol developed in this study will be useful in quantitatively and simultaneously investigating various IS elements, as well as in capturing novel functional mobile elements from a wide variety of bacteria.  相似文献   

7.
Insertion element ISD1, discovered when its transposition caused the insertional inactivation of an introduced sacB gene, is present in two copies in the genome of Desulfovibrio vulgaris Hildenborough. Southern blot analysis indicated at least two insertion sites in the sacB gene. Cloning and sequencing of a transposed copy of ISD1 indicated a length of 1,200 bp with a pair of 44-bp imperfect inverted repeats at the ends, flanked by a direct repeat of the 4-bp target sequence. AAGG and AATT were found to function as target sequences. ISD1 encodes a transposase from two overlapping open reading frames by programmed translational frameshifting at an A6G shifty codon motif. Sequence comparison showed that ISD1 belongs to the IS3 family. Isolation and analysis of the chromosomal copies, ISD1-A and ISD1-B, by PCR and sequencing indicated that these are not flanked by direct repeats. ISD1-A is inserted in a region of the chromosome containing the gapdh-pgk genes (encoding glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase). Active transposition to other loci in the genome was demonstrated, offering the potential of a new tool for gene cloning and mutagenesis. ISD1 is the first transposable element described for the sulfate reducers, a large and environmentally important group of bacteria. The distribution of ISD1 in genomes of sulfate-reducing bacteria is limited. A single copy is present in the genome of D. desulfuricans Norway.  相似文献   

8.
ISRm14 is 2695 basepairs (bp) in size and bordered by 22 bp imperfect inverted repeats (IRs). A 9-bp target sequence is duplicated upon ISRm14 transposition. The DNA strand that putatively encodes the transposase enzyme carries three open reading frames (ORFs) designated ORFs1 to 3, which specify putative proteins of 15.9 kDa, 13.1 kDa, and 61.1 kDa, respectively. According to its structural characteristics, ISRm14 belongs to the recently proposed IS66 family of IS elements. The ORFs1 to 3 encoded putative proteins displayed significant similarities to ORFs of the previously unrecognized IS element ISEc8, which is inserted adjacent to the locus of enterocyte effacement (LEE) pathogenicity island of Escherichia coli EDL933. Analyses of the distribution of ISRm14 in a natural S. meliloti population showed its widespread occurrence in 66% of the strains tested with a copy number ranging from 1 to 6. Received: 13 May 1999 / Accepted: 14 June 1999  相似文献   

9.
An IS element, termed ISCg2, was identified in the chromosome of Corynebacterium glutamicum ATCC 13032. After screening a cosmid library of the C. glutamicum ATCC 13032 genome, six copies of ISCg2 including their flanking regions were sequenced and analyzed. ISCg2 is 1636 bp in length and has 26-bp imperfect inverted repeats flanked by 3-bp direct repeats. By comparisons with other IS elements, ISCg2 was classified as a member of the IS30 family of insertion sequences. The six copies of ISCg2 were identical at the nucleotide level and were located in intergenic, AT-rich regions of the chromosome. The regions in which the six copies of ISCg2 were inserted displayed significant similarities. This similarity extends over a region of 65 bp, which was assumed to be the target region for ISCg2. Interestingly, five of the six copies of ISCg2 were located adjacent to genes that may be involved in aspartate and glutamate metabolism or its regulation. Investigation of the distribution of ISCg2 showed that the IS element is restricted to certain C. glutamicum strains. Analysis of various integration regions indicates active transposition of ISCg2 in C. glutamicum. Received: 7 April 1999 / Accepted: 17 June 1999  相似文献   

10.

Background

The IS6110 insertion sequence, a member of the IS3 family of insertion sequences, was found to be specific to the Mycobacterium tuberculosis complex (MTBC). Although IS6110 has been extensively characterized as a transposable genetic marker, the evolutionary history of its own transposase-encoding sequence has not, to the best of our knowledge, been investigated.

Methodology/Principal Findings

Here we explored the evolution of the IS6110 sequence by analysing the genetic variability and the selective forces acting on its transposase-encoding open reading frames (ORFs) A and B (orfA and orfB). For this purpose, we used a strain collection consisting of smooth tubercle bacilli (STB), an early branching lineage of the MTBC, and present-day M. tuberculosis strains representing the full breadth of genetic diversity in Tunisia. In each ORF, we found a major haplotype that dominated over a flat distribution of rare descendent haplotypes, consisting mainly of single- and double-nucleotide variant singletons. The predominant haplotypes consisted of both ancestral and present-day strains, suggesting that IS6110 acquisition predated the emergence of the MTBC. There was no evidence of recombination and both ORFs were subjected to strict purifying selection, as demonstrated by their dN/dS ratios (0.29 and 0.51, respectively), as well as their significantly negative Tajima’s D statistics. Strikingly, the purifying selection acting on orfA proved much more stringent, suggesting its critical role in regulating the transpositional process. Maximum likelihood analyses further excluded any possibility of positive selection acting on single amino acid residues.

Conclusions/Significance

Taken together our data fit with an evolutionary scenario according to which the observed variability pattern of the IS6110 transposase-encoding ORFs is generated mainly through random point mutations that accrued on a functionally optimal IS6110 copy, whose acquisition predated the emergence of the MTBC complex. Background selection acting against deleterious mutations led to an excess of low-frequency variants.  相似文献   

11.
Isolation and characterization of four different insertion sequence (IS) elements fromPseudomonas glumaeMAFF 302744 through transposition into the entrapment vector pSHI1063 are described. One of the elements, IS1416,was further characterized. IS1416is 1322 bp long and carries 29-bp terminal inverted repeats flanked by a 3-bp direct duplication. IS1416contains three open reading frames (ORFs), which are designated ORFA1, ORFA2, and ORFB, on one strand. Both DNA sequence of IS1416and the deduced amino acid sequences of its ORFs strongly suggest that IS1416is a member of the IS3family, and is closely related to IS401fromPseudomonas cepaciaand IS51fromPseudomonas syringae.To our knowledge, IS1416is the first IS element isolated fromP. glumae.The gene organization and possible regulation of transposition functions of IS1416are also discussed.  相似文献   

12.
Thirty-two plasmid insertion mutants were independently isolated from two strains of Xanthomonas campestris pv. campestris in Taiwan. Of the 32 mutants, 14 (44%), 8 (25%), and 4 (12%) mutants resulted from separate insertions of an IS3 family member, IS476, and two new insertion sequences (IS), IS1478 and IS1479. While IS1478 does not have significant sequence homology with any IS elements in the EMBL/GenBank/DDBJ database, IS1479 demonstrated 73% sequence homology with IS1051 in X. campestris pv. dieffenbachiae, 62% homology with IS52 in Pseudomonas syringae pv. glycinea, and 60% homology with IS5 in Escherichia coli. Based on the predicted transposase sequences as well as the terminal nucleotide sequences, IS1478 by itself constitutes a new subfamily of the widespread IS5 family, whereas IS1479, along with IS1051, IS52, and IS5, belongs to the IS5 subfamily of the IS5 family. All but one of the IS476 insertions had duplications of 4 bp at the target sites without sequence preference and were randomly distributed. An IS476 insertion carried a duplication of 952 bp at the target site. A model for generating these long direct repeats is proposed. Insertions of IS1478 and IS1479, on the other hand, were not random, and IS1478 and IS1479 each showed conservation of PyPuNTTA and PyTAPu sequences (Py is a pyrimidine, Pu is a purine, and N is any nucleotide) for duplications at the target sites. The results of Southern blot hybridization analysis indicated that multiple copies of IS476, IS1478, and IS1479 are present in the genomes of all seven X. campestris pv. campestris strains tested and several X. campestris pathovars.  相似文献   

13.
The Clostridium perfringens enterotoxin gene is on a transposon-like element, Tn5565, integrated in the chromosome in human food poisoning strains. The flanking IS elements, IS1470 A and B, are related to IS30. The IS element found in the transposon, IS1469, is related to IS200 and has been found upstream of cpe in all Type A strains. PCR and sequencing studies from cell extracts and plasmid isolations of C. perfringens indicate that Tn5565 can form a circular form with the tandem repeat (IS1470)2, similar to the transposition intermediates described for a number of IS elements.  相似文献   

14.
IS256 is the founding member of the IS256 family of insertion sequence (IS) elements. These elements encode a poorly characterized transposase, which features a conserved DDE catalytic motif and produces circular IS intermediates. Here, we characterized the IS256 transposase as a DNA-binding protein and obtained insight into the subdomain organization and functional properties of this prototype enzyme of IS256 family transposases. Recombinant forms of the transposase were shown to bind specifically to inverted repeats present in the IS256 noncoding regions. A DNA-binding domain was identified in the N-terminal part of the transposase, and a mutagenesis study targeting conserved amino acid residues in this region revealed a putative helix-turn-helix structure as a key element involved in DNA binding. Furthermore, we obtained evidence to suggest that the terminal nucleotides of IS256 are critically involved in IS circularization. Although small deletions at both ends reduced the formation of IS circles, changes at the left-hand IS256 terminus proved to be significantly more detrimental to circle production. Taken together, the data lead us to suggest that the IS256 transposase-mediated circularization reaction preferentially starts with a sequence-specific first-strand cleavage at the left-hand IS terminus.IS256 is an insertion sequence widespread in the genomes of multiresistant enterococci and staphylococci (3). The element, which is 1,324 bp in size, consists of a single open reading frame encoding a transposase protein flanked by noncoding regions (NCRs) harboring imperfect inverted repeats (IRs) (see Fig. Fig.1A).1A). IS256 occurs in multiple free copies in its host genomes but is also known to form the ends of composite transposon Tn4001 conferring aminoglycoside resistance (29). In Staphylococcus epidermidis, IS256 has been identified as a typical marker of hospital-acquired multiresistant and biofilm-forming clones causing opportunistic infections in immunocompromised patients (11, 20-22, 26, 34). The element has been shown to trigger heterogeneous biofilm expression by reversible transposition into biofilm-associated genes and regulators (4, 5, 19, 49, 56). Also, IS256 has the capacity to influence antibiotic resistance, either by insertion into regulatory genes or by modulating antibiotic resistance gene expression through formation of strong hybrid promoters resulting from transposition into the neighborhood of antibiotic resistance genes (6, 18, 31, 32). Finally, multiple genomic IS256 copies may serve as crossover points for homologous recombination events and thereby play an important role in genome flexibility, adaptation, and evolution of staphylococcal and enterococcal genomes (29, 42, 55).Open in a separate windowFIG. 1.IS256 transposase binding to IS termini. (A) Genetic organization of IS256. The transposase gene (tnp) is flanked by NCRs that harbor imperfect IRs (IRL and IRR) at the ends of the element. The nucleotide sequence of the IRs is indicated by uppercase boldface letters, with nucleotide numbering referring to GenBank accession no. M18086. Insertion of IS256 into the S. epidermidis icaC gene on plasmid pIL2 (27) is shown, and black boxes mark the 8-bp target site duplications (TSDs) generated upon transposition of the element. Black bars at the top indicate localizations of DNA fragments used in the EMSAs presented in panels B to D. (B to D) EMSAs of purified IS256 transposase protein (CBP-Tnp) with various IS256-specific DNA fragments. A 15.5 nM concentration of an IS terminus (left)-carrying DNA fragment (B) or an IS terminus (right)-carrying DNA-fragment (C), as well as an interal IS256 fragment (D), were used with increasing amounts of protein. All experiments were performed in the presence of unspecific competitor [50 μg of poly(dI-dC) ml−1]. Molar ratios between DNA and protein comprised a range of 1:3 (50 nM CBP-Tnp) to 1:52 (800 nM CBP-Tnp).Given its important biological role, it is surprising that very little is known about the molecular function of IS256 and its lifestyle. Empirical analyses of IS256 insertion sites in various bacterial genomes and loci did not reveal nucleotide sequence specificity for target site selection (3, 29, 56). Typically, IS256 generates 8- or 9-bp target site duplications (TSDs) upon transposition that are caused by staggered nicks of the target DNA and refill of the resulting gaps by the host repair system (43). In the course of phase variation events, IS256 TSDs can be completely removed, with the original host sequence being restored (56). Such precise IS256 excisions are caused by an illegitimate recombination event that requires fully intact TSDs but no functional IS256 transposase (14). IS256 transposition itself was found to involve the formation of double-stranded circular IS256 molecules in which the insertion sequence (IS) ends abut, bridged by a few base pairs of host DNA originating from the original insertion site (27, 39). IS256 circle formation is a strictly transposase-dependent process and IS circles are regarded as transposition intermediates which are likely to be relinearized during transposition. However, details of the transposition reaction, including circle formation, putative relinearization, target site selection, and insertion of the element are far from being understood at the molecular level. We experimentally addressed here, for the first time for a bacterial transposase of the IS256 family, the DNA-binding properties of this protein. We identified a DNA-binding domain in the N-terminal region of the protein. The domain contains a putative classical helix-turn-helix (HTH) motif that is demonstrated to be involved in sequence-specific interactions of the IS256 transposase with the IRs present in the NCRs of the element. Moreover, we suggest a role for the terminal nucleotides of the IS256 nucleotide sequence in first-strand cleavage and subsequent circularization of the element.  相似文献   

15.
《Gene》1998,207(1):93-96
Two novel insertion sequences, ISRm4-1 and ISRm9 have been identified in Sinorhizobium meliloti. ISRm4-1 is 936-bp in length, flanked by 17-bp putative terminal inverted repeats and a putative target duplication of 3-bp. ISRm4-1 is a member of the IS5 family of insertion sequences, closely related to ISRm4. ISRm9 is 2797-bp in length and carries 25-bp inverted repeats with target duplication of 7-bp. ISRm9 belongs to the IS21 family of insertion elements. On the non-pSym plasmid pRmeGR4b from S. meliloti strain GR4, a copy of ISRm4-1 is interrupted at nucleotide 150 from its 5′-end by a copy of ISRm9. Whereas ISRm4-like elements are widespread in S. meliloti, the distribution of ISRm9 appears to be correlated to that of pRmeGR4b-type plasmids.  相似文献   

16.
A new insertion element, IS1549, was identified serendipitously from Mycobacterium smegmatis LR222 during experiments using a vector designed to detect the excision of IS6110 from between the promoter region and open reading frame (ORF) of an aminoglycoside phosphotransferase gene. Six of the kanamycin-resistant isolates had a previously unidentified insertion element upstream of the ORF of the aph gene. The 1,634-bp sequence contained a single ORF of 504 amino acids with 85% G+C content in the third codon position. The putative protein sequence showed a distant relationship to the transposase of IS231, which is a member of the IS4 family of insertion elements. IS1549 contains 11-bp terminal inverted repeats and is characterized by the formation of unusually long and variable-length (71- to 246-bp) direct repeats of the target DNA during transposition. Southern blot analysis revealed that five copies of IS1549 are present in LR222, but not all M. smegmatis strains carry this element. Only strains with a 65-kDa antigen gene with a PCR-restriction fragment length polymorphism type identical to that of M. smegmatis 607 contain IS1549. None of 13 other species of Mycobacterium tested by PCR with two sets of primers specific for IS1549 were positive for the expected amplified product.  相似文献   

17.
We describe the characterization of a new insertion sequence, IS1515, identified in the genome of Streptococcus pneumoniae I41R, an unencapsulated mutant isolated many years ago (R. Austrian, H. P. Bernheimer, E. E. B. Smith, and G. T. Mills, J. Exp. Med. 110:585–602, 1959). A copy of this element located in the cap1EI41R gene was sequenced. The 871-bp-long IS1515 element possesses 12-bp perfect inverted repeats and generates a 3-bp target duplication upon insertion. The IS encodes a protein of 271 amino acid residues similar to the putative transposases of other insertion sequences, namely IS1381 from S. pneumoniae, ISL2 from Lactobacillus helveticus, IS702 from the cyanobacterium Calothrix sp. strain PCC 7601, and IS112 from Streptomyces albus G. IS1515 appears to be present in the genome of most type 1 pneumococci in a maximum of 13 copies, although it has also been found in the chromosome of pneumococcal isolates belonging to other serotypes. We have found that the unencapsulated phenotype of strain I41R is the result of both the presence of an IS1515 copy and a frameshift mutation in the cap1EI41R gene. Precise excision of the IS was observed in the type 1 encapsulated transformants isolated in experiments designed to repair the frameshift. These results reveal that IS1515 behaves quite differently from other previously described pneumococcal insertion sequences. Several copies of IS1515 were also able to excise and move to another locations in the chromosome of S. pneumoniae. To our knowledge, this is the first report of a functional IS in pneumococcus.  相似文献   

18.
A new insertion sequence (IS), IS1405, was isolated and characterized from a Ralstonia solanacearum race 1 strain by the method of insertional inactivation of the sacB gene. Sequence analysis indicated that the IS is closely related to the members of IS5 family, but the extent of nucleotide sequence identity in 5′ and 3′ noncoding regions between IS1405 and other members of IS5 family is only 23 to 31%. Nucleotide sequences of these regions were used to design specific oligonucleotide primers for detection of race 1 strains by PCR. The PCR amplified a specific DNA fragment for all R. solanacearum race 1 strains tested, and no amplification was observed with some other plant-pathogenic bacteria. Analysis of nucleotide sequences flanking IS1405 and additional five endogenous IS1405s that reside in the chromosome of R. solanacearum race 1 strains indicated that IS1405 prefers a target site of CTAR and has two different insertional orientations with respect to this target site. Restriction fragment length polymorphism (RFLP) pattern analysis using IS1405 as a probe revealed extensive genetic variation among strains of R. solanacearum race 1 isolated from eight different host plants in Taiwan. The RFLP patterns were then used to subdivide the race 1 strains into two groups and several subgroups, which allowed for tracking different subgroup strains of R. solanacearum through a host plant community. Furthermore, specific insertion sites of IS1405 in certain subgroups were used as a genetic marker to develop subgroup-specific primers for detection of R. solanacearum, and thus, the subgroup strains can be easily identified through a rapid PCR assay rather than RFLP analysis.  相似文献   

19.
A new insertion sequence (IS1383) was identified on plasmids from Pseudomonas putida strain H and its nucleotide sequence was determined. IS1383 contains perfect terminal inverted repeats of 13-bp flanking a 1.4-kb internal sequence. A single significant open reading frame was identified that can encode a 342-amino acid polypeptide which was predicted to be highly basic and to have homology to polypeptides known from several other bacterial insertion sequences. At least six copies of IS1383 are present on the plasmids pPGH1 and pPGH2, whereas no copy could be detected on the chromosome of P. putida strain H. Target duplications did not flank the inverted repeats of any of the six IS1383 copies examined. Analysis of the integration sites of IS1383 revealed hints for a target specificity. Multiple sequence alignments of the transposases, the inverted repeats and the integration sites pointed to the assignment of IS1383 into a putative new family of insertion sequences defined as the IS1111 family.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号