首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Spodoptera frugiperda (J. E. Smith) is a highly adaptable polyphagous migratory pest in tropical and subtropical regions. Small heat shock proteins (sHsps) are molecular chaperones that play important roles in the adaptation to various environment stressors. The present study aimed to clarify the response mechanisms of S. frugiperda to various environmental stressors. We obtained five S. furcifera sHsp genes (SfsHsp21.3, SfsHsp20, SfsHsp20.1, SfsHsp19.3, and SfsHsp29) via cloning. The putative proteins encoded by these genes contained a typical α-crystallin domain. The expression patterns of these genes during different developmental stages, in various tissues of male and female adults, as well as in response to extreme temperatures and UV-A stress were studied via real-time quantitative polymerase chain reaction. The results showed that the expression levels of all five SfsHsp genes differed among the developmental stages as well as among the different tissues of male and female adults. The expression levels of most SfsHsp genes under extreme temperatures and UV-A-induced stress were significantly upregulated in both male and female adults. In contrast, those of SfsHsp20.1 and SfsHsp19.3 were significantly downregulated under cold stress in male adults. Therefore, the different SfsHsp genes of S. frugiperda play unique regulatory roles during development as well as in response to various environmental stressors.  相似文献   

8.
9.
Genes controlling chromosome activity   总被引:3,自引:0,他引:3  
Normal propagation of Y chromosome lampbrush loops was used as a screening tool in order to recover X-linked mutations controling Y chromosome activation. The nature of the most extreme mutationthus recovered, sterile (1) XL2, is described. It is a recessive gene mutation, readily mapped 2 cross over units distally to white. The mutation exerts its sterilizing effect by blocking normal unfolding of all Y lampbrush loops, but does not affect the unique shape of each diminutive loop. The degree to which a loop forming site is developed is partially temperature sensitive. It is independent however, on its map location or the dose of homologous as well as heterologous sites. It was provisionally concluded therefore that site response to the XL2 effect is a stage specific and not a quantitative one. The possible ways by which non homologous genes control Y chromosome activity are discussed.  相似文献   

10.
11.
Peptide transporter 1 (SLC15A1, PepT1), excitatory amino acid transporter 3 (SLC1A1, EAAT3) and cationic amino acid transporter 1 (SLC7A1, CAT1) were identified as genes responsible for the transport of small peptides and amino acids. The tissue expression pattern of rabbit (SLC15A1, SLC7A1 and SLC1A1) across the digestive tract remains unclear. The present study investigated SLC15A1, SLC7A1 and SLC1A1 gene expression patterns across the digestive tract at different stages of development and in response to dietary protein levels. Real time-PCR results indicated that SLC15A1, SLC7A1 and SLC1A1 genes throughout the rabbits’ entire development and were expressed in all tested rabbit digestive sites, including the stomach, duodenum, jejunum, ileum, colon and cecum. Furthermore, SLC7A1 and SLC1A1 mRNA expression occurred in a tissue-specific and time-associated manner, suggesting the distinct transport ability of amino acids in different tissues and at different developmental stages. The most highly expressed levels of all three genes were in the duodenum, ileum and jejunum in all developmental stages. All increased after lactation. With increased dietary protein levels, SLC7A1 mRNA levels in small intestine and SLC1A1 mRNA levels in duodenum and ileum exhibited a significant decreasing trend. Moreover, rabbits fed a normal level of protein had the highest levels of SLC15A1 mRNA in the duodenum and jejunum (P<0.05). In conclusion, gene mRNA differed across sites and with development suggesting time and sites related differences in peptide and amino acid absorption in rabbits. The effects of dietary protein on expression of the three genes were also site specific.  相似文献   

12.
13.
Improved drought tolerance is always a highly desired trait for agricultural plants. Significantly increased drought tolerance in Arabidopsis thaliana (Columbia-0) has been achieved in our work through the suppression of ESKMO1 (ESK1) gene expression with small-interfering RNA (siRNA) and overexpression of CBF genes with constitutive gene expression. ESK1 has been identified as a gene linked to normal development of the plant vascular system, which is assumed directly related to plant drought response. By using siRNA that specifically targets ESK1, the gene expression has been reduced and drought tolerance of the plant has been enhanced dramatically in the work. However, the plant response to external abscisic acid application has not been changed. ICE1, CBF1, and CBF3 are genes involved in a well-characterized plant stress response pathway, overexpression of them in the plant has demonstrated capable to increase drought tolerance. By overexpression of these genes combining together with suppression of ESK1 gene, the significant increase of plant drought tolerance has been achieved in comparison to single gene manipulation, although the effect is not in an additive way. Accompanying the increase of drought tolerance via suppression of ESK1 gene expression, the negative effect has been observed in seeds yield of transgenic plants in normal watering conditions comparing with wide type plant.  相似文献   

14.
Seedless avocado fruit are produced alongside seeded fruit in the cultivar Arad, and both reach maturity at the same time. Using this system, it was possible to show that avocado seed inhibits the ripening process: seedless fruits exhibited higher response to exogenous ethylene already at the fruitlet stage, and also at the immature and mature fruit stages. They produced higher CO2 levels, and the ethylene peak was apparent at the fruitlet stage of seedless fruit, but not of seeded ones. The expression levels of PaETR, PaERS1 and PaCTR1 on the day of harvest at all developmental stages were very similar between seeded and seedless fruit, except that PaCTR1 was higher in seedless fruit only at very early stages. This expression pattern suggests that the seed does not have an effect on components of the ethylene response pathway when fruits are just picked. The expression of MADS-box genes, PaAG1 and PaAGL9, preceded the increase in ethylene production of mature seeded fruit, but not at earlier stages. However, only PaAGL9 was induced in seedless fruit at early stages of development. Taken together, these data suggest that these genes are perhaps involved in climacteric response in seeded fruit, and the seed is responsible for their induction at normal fruit ripening.  相似文献   

15.
Foldback (FB) elements are transposable elements found in many eukaryotic genomes; they are thought to contribute significantly to genome plasticity. In Drosophila melanogaster, FBs have been shown to be involved in the transposition of large chromosomal regions and in the genetic instability of some alleles of the white gene. In this report we show that FB mediated transposition of w 67C23, a mutation that deletes the promoter of the white gene and its first exon, containing the start codon, can restore expression of the white gene. We have characterized three independent events in which a 14-kb fragment from the w 67C23 locus was transposed into an intron region in three different genes. In each case a local promoter drives the expression of white, producing a chimeric mRNA. These findings suggest that, on an evolutionary timescale, FB elements may contribute to the creation of new genes via exon shuffling.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by G. P. Georgiev  相似文献   

16.
We investigated the effect of a Cd solubilising soil treatment on the expression of genes regulating Cd uptake and detoxification in field-grown tobacco plants. Tobacco plants were grown on a heavy-metal contaminated soil to which elemental sulphur was applied to increase the phytoextraction of Cd. The expression of tobacco gene homologues for A. thaliana MRP3, PDR8, ATM3, Sultr1, LAST, APR2, APR3, GSHI, GSHII, and NAS3 was assayed by qualitative RT-PCR.Increased root and shoot Cd concentrations were associated with up-regulation of the putative Cd transporters and the genes involved in sulphur assimilation in root tissues. This is consistent with previous studies using hydroponics. However, unlike the previous studies, most of the genes tested in the leaves were unaffected by Cd concentration.These differences may be due to the more complex stress situation that plants experienced here under field conditions. Moreover, unlike in hydroponic studies, our plants were sampled at maturity and not in the seedling stage. Our results indicate that hydroponic or agar experiments are useful predictors of effects that may be expected in the field. However, there is a need for studies investigating gene expression in response to multiple stresses representative for field conditions at later developmental stages.  相似文献   

17.
18.
19.
In this study, we developed a simple and efficient transient transformation system, which can be used in homologous expression or reverse genetic study of the plants. A system for characterizing gene function in response to stress tolerance was also developed based on this transformation method. The overexpression and RNAi-silencing of a bZIP gene from Tamarix hispida, ThbZIP1, were performed in T. hispida using this transformation method. Real-time PCR showed that the expression of ThbZIP1 was highly up- and down-regulated in the plants with overexpression and RNAi-silenced expression of ThbZIP1, respectively, when compared with control plants (transiently transformed with empty pROK2). A physiological study showed that ThbZIP1 can enhance the activities of both peroxidase (POD) and superoxide dismutase (SOD), and decrease electrolyte leakage rate and levels of reactive oxygen species (ROS) and malondialdehyde (MDA) under salt stress conditions. Furthermore, ThbZIP1 is found to mediate stress tolerance by regulating the expression of SOD and POD genes. These results suggested that this transient transformation system is an effective method for determining the function of a gene in response to abiotic stress in plants.  相似文献   

20.
The real-time polymerase chain reaction (PCR) data requires normalization with an internal control gene expressed at constant levels under all the experimental conditions being analyzed for accurate and reliable gene expression results. In this study, the expression of 12 candidate internal control genes, including ACT1, EF1α, GAPDH, IF4a, TUB6, UBC, UBQ5, UBQ10, 18SrRNA, 25SrRNA, GRX and HSP90, in a diverse set of 18 tissue samples representing different organs/developmental stages and stress conditions in chickpea (Cicer arietinum L.) has been validated. Their expression levels vary considerably in various tissue samples analyzed. The expression levels of EF1α and HSP90 are most constant across various organs/developmental stages analyzed. Similarly, the expression levels of IF4a and GAPDH are most constant across various stress conditions. A set of two most stable genes is found sufficient for accurate and reliable normalization of real-time PCR data in the given set of tissue samples of chickpea. The genes with most constant expression identified in this study should be useful for normalization of gene expression data in a wide variety of tissue samples in chickpea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号