首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many high-value secondary metabolites are assembled by very large multifunctional polyketide synthases or non-ribosomal peptide synthetases encoded by giant genes, for instance, natamycin production in an industrial strain of Streptomyces gilvosporeus. In this study, a large operon reporter-based selection system has been developed using the selectable marker gene neo to report the expression both of the large polyketide synthase genes and of the entire gene cluster, thereby facilitating the selection of natamycin-overproducing mutants by iterative random mutagenesis breeding. In three successive rounds of mutagenesis and selection, the natamycin titer was increased by 110%, 230%, and 340%, respectively, and the expression of the whole biosynthetic gene cluster was correspondingly increased. An additional copy of the natamycin gene cluster was found in one overproducer. These findings support the large operon reporter-based selection system as a useful tool for the improvement of industrial strains utilized in the production of polyketides and non-ribosomal peptides.  相似文献   

2.
3.
4.
The oxazolomycins (OZMs) are a growing family of antibiotics produced by several Streptomyces species that show diverse and important antibacterial, antitumor, and anti-human immunodeficiency virus activity. Oxazolomycin A is a peptide-polyketide hybrid compound containing a unique spiro-linked β-lactone/γ-lactam, a 5-substituted oxazole ring. The oxazolomycin biosynthetic gene cluster (ozm) was identified from Streptomyces albus JA3453 and localized to 79.5-kb DNA, consisting of 20 open reading frames that encode non-ribosomal peptide synthases, polyketide synthases (PKSs), hybrid non-ribosomal peptide synthase-PKS, trans-acyltransferases (trans-ATs), enzymes for methoxymalonyl-acyl carrier protein (ACP) synthesis, putative resistance genes, and hypothetical regulation genes. In contrast to classical type I polyketide or fatty acid biosynthases, all 10 PKS modules in the gene cluster lack cognate ATs. Instead, discrete ATs OzmM (with tandem domains OzmM-AT1 and OzmM-AT2) and OzmC were equipped to carry out all of the loading functions of both malonyl-CoA and methoxymalonyl-ACP extender units. Strikingly, only OzmM-AT2 is required for OzmM activity for OZM biosynthesis, whereas OzmM-AT1 seemed to be a cryptic AT domain. The above findings, together with previous results using isotope-labeled precursor feeding assays, are assembled for the OZM biosynthesis model to be proposed. The incorporation of both malonyl-CoA (by OzmM-AT2) and methoxymalonyl-ACP (by OzmC) extender units seemed to be unprecedented for this class of trans-AT type I PKSs, which might be fruitfully manipulated to create structurally diverse novel compounds.  相似文献   

5.
The Bacillus subtilis LiaRS two-component system (TCS) responds to perturbations of the cell envelope induced by lipid II-interacting antibiotics, such as vancomycin, ramoplanin, nisin, and bacitracin. Here, we characterize Tn7-generated mutations that induce the liaRS TCS. In addition to insertions in liaF, a known negative regulator of the LiaRS TCS, we identified two disruptions in the last two genes of the yydFGHIJ operon. This operon is predicted to encode a 49-amino-acid peptide (YydF), a modification enzyme (YydG), a membrane-embedded protease (YydH), and an ATP-binding cassette (ABC) transporter (YydIJ). Genome sequence comparisons suggest that the yydFGHIJ operon may have been acquired by horizontal transfer. Inactivation of the YydIJ transporter resulted in increased expression from the LiaR-dependent PliaI promoter only in the presence of the yydFGH genes. Cells harboring the complete yydFGHIJ operon induced LiaR activity in cocultured cells lacking either this transporter or the complete operon. These results suggest that this operon is involved in the synthesis and export of a modified peptide (YydF*) that elicits cell envelope stress sensed by the LiaRS TCS.  相似文献   

6.
The Sinorhizobium meliloti megaplasmid pSymA has previously been implicated in gluconate utilization. We report a locus on pSymA encoding a putative tripartite ATP-independent periplasmic (TRAP) transporter that is required for gluconate utilization. The expression of this locus is negatively regulated by a GntR family regulator encoded adjacent to the transporter operon.  相似文献   

7.
8.
Neotyphodium and Epichloë spp are closely related asexual and sexual endophytic fungi, respectively, that form mutualistic associations with cool season grasses of the subfamily Pooideae. The endophytes confer a number of advantages to their hosts, but also can cause animal toxicoses and these effects are, in many cases, due to the production of fungal secondary metabolites. In filamentous fungi, secondary metabolite genes are commonly clustered and, for those pathways involved in non-ribosomal peptide synthesis, a non-ribosomal peptide synthetase (NRPS) gene is always found as a key component of the cluster. Members of this gene family encode large multifunctional enzymes that synthesize a diverse range of bioactive compounds and in numerous cases have been shown to serve as pathogenicity or virulence factors, in addition to suggested roles in niche adaptation. We have used a degenerate PCR approach to identify members of the NRPS gene family from symbiotic fungi of the Neotyphodium/Epichloë complex, and have shown that collectively, at least 12 NRPS genes exist within the genomes examined. This suggests that secondary metabolites are important during the life cycles of these fungi with their hosts. Indeed, both the ergovaline and peramine biosynthetic pathways, which confer competitive abilities to Neotyphodium and Epichloë symbioses, contain NRPS genes at their core. The distribution of these genes among different Neotyphodium/Epichloë lineages suggests that a common ancestor contributed most of the complement of NRPS genes, which have been either retained or lost during the evolution of these fungi.  相似文献   

9.
There is a continuing need to discover new bioactive natural products, such as antibiotics, in genetically-amenable micro-organisms. We observed that the enteric insect pathogen, Serratia marcescens Db10, produced a diffusible compound that inhibited the growth of Bacillis subtilis and Staphyloccocus aureus. Mapping the genetic locus required for this activity revealed a putative natural product biosynthetic gene cluster, further defined to a six-gene operon named alb1–alb6. Bioinformatic analysis of the proteins encoded by alb1–6 predicted a hybrid non-ribosomal peptide synthetase-polyketide synthase (NRPS-PKS) assembly line (Alb4/5/6), tailoring enzymes (Alb2/3) and an export/resistance protein (Alb1), and suggested that the machinery assembled althiomycin or a related molecule. Althiomycin is a ribosome-inhibiting antibiotic whose biosynthetic machinery had been elusive for decades. Chromatographic and spectroscopic analyses confirmed that wild type S. marcescens produced althiomycin and that production was eliminated on disruption of the alb gene cluster. Construction of mutants with in-frame deletions of specific alb genes demonstrated that Alb2–Alb5 were essential for althiomycin production, whereas Alb6 was required for maximal production of the antibiotic. A phosphopantetheinyl transferase enzyme required for althiomycin biosynthesis was also identified. Expression of Alb1, a predicted major facilitator superfamily efflux pump, conferred althiomycin resistance on another, sensitive, strain of S. marcescens. This is the first report of althiomycin production outside of the Myxobacteria or Streptomyces and paves the way for future exploitation of the biosynthetic machinery, since S. marcescens represents a convenient and tractable producing organism.  相似文献   

10.
Three new polarity suppressors, selected to relieve the polar effect of nonsense mutations in the tryptophan (trp) and lactose (lac) operons of Escherichia coli, increase expression distal to nonsense mutations in both operons to a greater extent than suA. These suppressors relieve the polarity created by amber, ochre and frameshift mutations with equal efficiency.Two of the three polarity suppressors elevate enzyme synthesis in the wildtype trp operon two- and fivefold, respectively. The increase in enzyme levels is in each case correlated with increased levels and rates of synthesis of structural gene trp messenger RNA. Since expression of all genes is elevated, these findings suggest the existence of a site early in the wild-type trp operon that affects the extent of operon expression. We located the site affected by these two polarity suppressors between the operator and the first structural gene, trpE. Although the third polarity suppressor also relieves mutational polarity efficiently, it has no detectable effect on expression of the wild-type trp operon.  相似文献   

11.
Xenorhabdus nematophila is an emerging model for both mutualism and pathogenicity in different invertebrate hosts. Here we conduct a mutant study of the EnvZ-OmpR two-component system and the flagella sigma factor, FliA (sigma28). Both ompR and envZ strains displayed precocious swarming behaviour, elevated flhD and fliA mRNA levels and early production of lipase, protease, haemolysin and antibiotic activity. Inactivation of fliA eliminated exoenzyme production which was restored by complementation with the fliAZ operon. Inactivation of flhA, a gene encoding a component of the flagella export apparatus, eliminated lipase but not protease or haemolysin production indicating these enzymes are secreted by different export pathways. FliA-regulated lipase (xlpA) and protease (xrtA) genes were identified. Their expression and level of production were elevated in the ompR and envZ strains and markedly reduced in the fliA strain while both were expressed normally in the flhA strain. We also found that expression of nrps1 which encodes a non-ribosomal peptide synthetase was elevated in the ompR and envZ strains. The fliA strain was pathogenic towards the insect host indicating that motility and FliA-regulated exoenzyme production were not essential for virulence. These findings support a model in which the EnvZ-OmpR-FlhDC-FliA regulatory network co-ordinately controls flagella synthesis, and exoenzyme and antibiotic production in X. nematophila.  相似文献   

12.
13.
Bacillus strains produce non-ribosomal lipopeptides that can be grouped into three families: surfactins or lichenysins, iturins and fengycins or plispastatins. These biosurfactants show a broad spectrum of biological activities. To detect strains able to produce these lipopeptides, a new polymerase chain reaction screening approach was developed using degenerated primers based on the intraoperon alignment of adenylation and thiolation nucleic acid domains of all enzymes implicated in the biosynthesis of each lipopeptide family. The comparative bioinformatics analyses of each operon led to the design of four primer pairs for the three families taking into account the differences between open reading frames of each synthetase gene. Tested on different Bacillus sp. strains, this technique was used successfully to detect not only the expected genes in the lipopeptide producing strains but also the presence of a plispastatin gene in Bacillus subtilis ATCC 21332 and a gene showing a high similarity with the polyketide synthase type I gene in the B. subtilis ATCC 6633 genome. It also led to the discovery of the presence of non-ribosomal peptide synthetase genes in Bacillus thuringiensis serovar berliner 1915 and in Bacillus cereus LMG 2098. In addition, this work highlighted the differences between the fengycin and plipastatin operon at DNA level.  相似文献   

14.
Acidity has profound effects on the taste of apples (Malus × domestica). Malic acid is the predominant organic acid in apples. Differences in malic acid content are caused by differences in accumulation of malic acid in the vacuole. This accumulation may be caused by a gene that is responsible for transport of malic acid from the cytosol into the vacuole. Here, we provide evidence that a malic acid transporter gene at the top of chromosome 16 caused significant differences in malic acid concentration and pH of apples. The pH of apples in a segregating F1 population was mapped and at the pH locus (named henceforth Ma locus for malic acid), two putative malic acid transporter genes were detected. These genes show high homology to AtALMT genes that code for malate channel proteins located in vacuolar membrane in Arabidopsis. The expression of one of the candidate genes (Ma1) cosegregated clearly with malic acid content. The inheritance of at least one dominant allele of this gene sufficed for an increased expression level that likely caused the observed threefold increase of the malic acid concentration and the reduction of the pH from 4 to 3 in mature apples, compared to the presence of the recessive, lowly expressed allele only. Our results show that differences in fruit acidity were probably caused by differences in expression levels of alleles of a malic acid transporter gene.  相似文献   

15.
16.
17.
18.
19.
20.
The DNA sequence changes of 31 mutations altering the attenuation control mechanism of the histidine operon are presented. These mutations are discussed in terms of a model for operon regulation that involves a his leader peptide gene whose translation regulates formation of alternative stem-loop structures in the his leader messenger RNA. Three suppressible mutations generate nonsense codons (ochre and UGA) in the his leader peptide gene, demonstrating that translation of this gene is essential for operon expression. Eight mutations presumably reduce the efficiency of translation initiation of the his leader peptide gene, causing reduced levels of operon expression. Five of these mutations directly alter the leader peptide gene initiator codon (AUG). Three mutations alter sequences just in front of the initiator codon and presumably alter the ribosome recognition site. Fourteen mutations reduce the stability of the his leader mRNA stem-loop structures that are alternatives to the attenuator stem. The properties of these mutations provide support for the role of these stem-loop structures in preventing formation of the attenuator stem. Finally, we show that mutations that alter the attenuator stem suppress hisO mutations. This lends support to the proposal that these hisO mutations cause reduced levels of operon expression due to excessive attenuator stem formation. The properties of these 31 mutations provide substantial support for the model of his operon regulation described in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号