首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gollapalli DR  Rando RR 《Biochemistry》2003,42(19):5809-5818
The identification of the critical enzyme(s) that carries out the trans to cis isomerization producing 11-cis-retinol during the operation of the visual cycle remains elusive. Confusion exists in the literature as to the exact nature of the isomerization substrate. At issue is whether it is an all-trans-retinyl ester or all-trans-retinol (vitamin A). As both putative substrates interconvert rapidly in retinal pigment epithelial membranes, the choice of substrate can be ambiguous. The two enzymes that effect interconversion of all-trans-retinol and all-trans-retinyl esters are lecithin retinol acyl transferase (LRAT) and retinyl ester hydrolase (REH). The retinyl ester or all-trans-retinol pools are radioactively labeled separately in the presence of inhibitors of LRAT and REH, effectively preventing their interconversion. Pulse-chase experiments unambiguously demonstrate that all-trans-retinyl esters, and not all-trans-retinol, are the precursors of 11-cis-retinol. When the all-trans-retinyl ester pool is radioactively labeled, the resulting 11-cis-retinol is labeled with the same specific activity as the precursor ester. The converse is true with vitamin A. These data unambiguously establish all-trans-retinyl esters as the precursors of 11-cis-retinol.  相似文献   

2.
Lecithin retinol acyl transferase (LRAT) from the retinyl pigment epithelium is potently inhibited by all-trans-retinyl alpha-bromoacetate in the micromolar range. The inhibition is competitive and reversible. The retinyl pigment epithelium also contains an enzymatic activity capable of converting added all-trans-retinol into 11-cis-retinol. This isomerization is likely to require the intermediate formation of all-trans-retinyl esters, which are themselves produced by LRAT action. Here this possibility is directly tested by studying the effect of all-trans-retinyl alpha-bromoacetate on the isomerization reaction. When pigment epithelium membranes are preincubated with all-trans-retinyl alpha-bromoacetate, they form neither retinyl esters nor 11-cis-retinol from added all-trans-retinol. However, if the pigment epithelium membranes are first allowed to form all-trans-retinyl esters from all-trans-retinol before the addition of all-trans-retinyl alpha-bromoacetate, then 11-cis-retinol formation proceeds at close to the rate found in the absence of inhibitor. In addition, 11-cis-retinyl esters are not formed under these conditions, eliminating the possibility of a direct ester-ester isomerization route. Therefore, all-trans-retinyl esters are obligate intermediates in the biosynthesis of 11-cis-retinol.  相似文献   

3.
The regeneration of 11-cis-retinal, the universal chromophore of the vertebrate retina, is a complex process involving photoreceptors and adjacent retinal pigment epithelial cells (RPE). 11-cis-Retinal is coupled to opsins in both rod and cone photoreceptor cells and is photoisomerized to all-trans-retinal by light. Here, we show that RPE microsomes can catalyze the reverse isomerization of 11-cis-retinol to all-trans-retinol (and 13-cis-retinol), and membrane exposure to UV light further enhances the rate of this reaction. This conversion is inhibited when 11-cis-retinol is in a complex with cellular retinaldehyde-binding protein (CRALBP), providing a clear demonstration of the protective effect of retinoid-binding proteins in retinoid processes in the eye, a function that has been long suspected but never proven. The reverse isomerization is nonenzymatic and specific to alcohol forms of retinoids, and it displays stereospecific preference for 11-cis-retinol and 13-cis-retinol but is much less efficient for 9-cis-retinol. The mechanism of reverse isomerization was investigated using stable isotope-labeled retinoids and radioactive tracers to show that this reaction occurs with the retention of configuration of the C-15 carbon of retinol through a mechanism that does not eliminate the hydroxyl group, in contrast to the enzymatic all-trans-retinol to 11-cis-retinol reaction. The activation energy for the conversion of 11-cis-retinol to all-trans-retinol is 19.5 kcal/mol, and 20.1 kcal/mol for isomerization of 13-cis-retinol to all-trans-retinol. We also demonstrate that the reverse isomerization occurs in vivo using exogenous 11-cis-retinol injected into the intravitreal space of wild type and Rpe65-/- mice, which have defective forward isomerization. This study demonstrates an uncharacterized activity of RPE microsomes that could be important in the normal flow of retinoids in the eye in vivo during dark adaptation.  相似文献   

4.
R R Rando 《Biochemistry》1991,30(3):595-602
Biology depends on the coupling of the free energy of hydrolysis of phosphate esters, such as ATP, to drive processes which would otherwise be thermodynamically unfavorable. Carboxyl esters are like phosphate esters in their ability to hydrolyze with substantial negative free energies, enabling them to participate in group transfer processes as well. In particular, membrane phospholipids constitute an enormous store of potential energy that could be used to fuel energetically unfavorable processes. One such process involves the biosynthesis of 11-cis-retinal, the chromophore of rhodopsin, from all-trans-retinol (vitamin A). The difference in free energy between an all-trans retinoid and its corresponding 11-cis retinoid is approximately 4 kcal/mol. This energy is provided for in a minimally two-step process involving membrane phospholipids as the energy source. First, all-trans-retinol is esterified in the retinal pigment epithelium by lecithin retinol acyl transferase (LRAT) to produce an all-trans-retinyl ester. Second, this ester is transformed into 11-cis-retinol by an isomerohydrolase in a process that couples the negative free energy of hydrolysis of the acyl ester to the formation of the strained 11-cis-retinol.  相似文献   

5.
In the retinal rod and cone photoreceptors, light photoactivates rhodopsin or cone visual pigments by converting 11-cis-retinal to all-trans-retinal, the process that ultimately results in phototransduction and visual sensation. The production of 11-cis-retinal in adjacent retinal pigment epithelial (RPE) cells is a fundamental process that allows regeneration of the vertebrate visual system. Here, we present evidence that all-trans-retinol is unstable in the presence of H(+) and rearranges to anhydroretinol through a carbocation intermediate, which can be trapped by alcohols to form retro-retinyl ethers. This ability of all-trans-retinol to form a carbocation could be relevant for isomerization. The calculated activation energy of isomerization of all-trans-retinyl carbocation to the 11-cis-isomer was only approximately 18 kcal/mol, as compared to approximately 36 kcal/mol for all-trans-retinol. This activation energy is similar to approximately 17 kcal/mol obtained experimentally for the isomerization reaction in RPE microsomes. Mass spectrometric (MS) analysis of isotopically labeled retinoids showed that isomerization proceeds via alkyl cleavage mechanism, but the product of isomerization depended on the specificity of the retinoid-binding protein(s) as evidenced by the production of 13-cis-retinol in the presence of cellular retinoid-binding protein (CRBP). To test the influence of an electron-withdrawing group on the polyene chain, which would inhibit carbocation formation, 11-fluoro-all-trans-retinol was used in the isomerization assay and was shown to be inactive. Together, these results strengthen the idea that the isomerization reaction is driven by mass action and may occur via carbocation intermediate.  相似文献   

6.
Understanding of the stereospecificity of enzymatic reactions that regenerate the universal chromophore required to sustain vision in vertebrates, 11-cis-retinal, is needed for an accurate molecular model of retinoid transformations. In rod outer segments (ROS), the redox reaction involves all-trans-retinal and pro-S-NADPH that results in the production of pro-R-all-trans-retinol. A recently identified all-trans-retinol dehydrogenase (photoreceptor retinol dehydrogenase) displays identical stereospecificity to that of the ROS enzyme(s). This result is unusual, because photoreceptor retinol dehydrogenase is a member of a short chain alcohol dehydrogenase family, which is often pro-S-specific toward their hydrophobic alcohol substrates. The second redox reaction occurring in retinal pigment epithelium, oxidation of 11-cis-retinol, which is largely catalyzed by abundantly expressed 11-cis-retinol dehydrogenase, is pro-S-specific to both 11-cis-retinol and NADH. However, there is notable presence of pro-R-specific activities. Therefore, multiple retinol dehydrogenases are involved in regeneration of 11-cis-retinal. Finally, the cellular retinaldehyde-binding protein-induced isomerization of all-trans-retinol to 11-cis-retinol proceeds with inversion of configuration at the C(15) carbon of retinol. Together, these results provide important additions to our understanding of retinoid transformations in the eye and a prelude for in vivo studies that ultimately may result in efficient pharmacological intervention to restore and prevent deterioration of vision in several inherited eye diseases.  相似文献   

7.
Visual sensation in vertebrates is triggered when light strikes retinal photoreceptor cells causing photoisomerization of the rhodopsin chromophore 11-cis-retinal to all-trans-retinal. The regeneration of preillumination conditions of the photoreceptor cells requires formation of 11-cis-retinal in the adjacent retinal pigment epithelium (RPE). Using the intrinsic fluorescence of all-trans-retinyl esters, noninvasive two-photon microscopy revealed previously uncharacterized structures (6.9 +/- 1.1 microm in length and 0.8 +/- 0.2 microm in diameter) distinct from other cellular organelles, termed the retinyl ester storage particles (RESTs), or retinosomes. These structures form autonomous all-trans-retinyl ester-rich intracellular compartments distinct from other organelles and colocalize with adipose differentiation-related protein. As demonstrated by in vivo experiments using wild-type mice, the RESTs participate in 11-cis-retinal formation. RESTs accumulate in Rpe65-/- mice incapable of carrying out the enzymatic isomerization, and correspondingly, are absent in the eyes of Lrat-/- mice deficient in retinyl ester synthesis. These results indicate that RESTs located close to the RPE plasma membrane are essential components in 11-cis-retinal production.  相似文献   

8.
Washed, buffered microsomes from bovine retinal pigment epithelium catalyze retinyl ester synthesis from retinol in the absence of an exogenous acyl donor. A plot of retinyl ester synthesis versus time reaches a plateau at 123 +/- 26 nmol of retinyl ester mg-1 microsomal protein, providing a minimum value of the concentration of the endogenous acyl donor. Fatty acyl-CoA analysis by three different methods employing high performance liquid chromatography resulted in the detection of less than 1 nmol mg-1 protein of acyl-CoA, indicating that fatty acyl-CoA is not the endogenous acyl donor. Stimulation of the rate of retinyl ester synthesis by palmitoyl-CoA or ATP, CoA, and palmitate is observed following its addition at the beginning of the reaction or after the endogenous acyl source has been exhausted by 20 min of reaction with retinol. Palmitate from [14C]palmitoyl-CoA is incorporated into retinyl ester at a rate similar to that for the incorporation of [3H] retinol, demonstrating the presence of an apparent acyl-CoA:retinol acyl transferase activity. The acyl group from palmitoyl-CoA can be transferred initially to a component of the microsomes and subsequently to retinol. The product of retinyl ester synthesis from all-trans-retinol and palmitoyl-CoA is all-trans-retinyl palmitate, indicating that the stereochemical configuration is retained during esterification. The kinetic parameters for the esterification of 11-cis-retinol and all-trans-retinol are similar.  相似文献   

9.
H Stecher  O Prezhdo  J Das  R K Crouch  K Palczewski 《Biochemistry》1999,38(41):13542-13550
Photoisomerization of 11-cis-retinal to all-trans-retinal triggers phototransduction in the retinal photoreceptor cells and causes ultimately the sensation of vision. 11-cis-Retinal is enzymatically regenerated through a complex set of reactions in adjacent retinal pigment epithelial cells (RPE). In this study using all-trans-9-desmethylretinol (lacking the C(19) methyl group) and all-trans-13-desmethylretinol (lacking the C(20) methyl group), we explored the effects of C(19) and C(20) methyl group removals on isomerization of these retinols in RPE microsomes. The C(19) methyl group may be involved in the substrate activation, whereas the C(20) methyl group causes steric hindrance with a proton in position C(10) of 11-cis-retinol; thus, removal of this group could accelerate isomerization. We found that all-trans-9-desmethylretinol and all-trans-13-desmethylretinol are isomerized to their corresponding 11-cis-alcohols, although with lower efficiencies than isomerization of all-trans-retinol to 11-cis-retinol. These findings make the mechanism of isomerization through the C(19) methyl group unlikely, because in the case of 9-desmethylretinol, the isomerization would have to progress by proton abstraction from electron-rich olefinic C(9). The differences between all-trans-retinol, all-trans-9-desmethylretinol, and all-trans-13-desmethylretinol appear to be a consequence of the enzymatic properties, and binding affinities of the isomerization system, rather than differences in the chemical or thermodynamic properties of these compounds. This observation is also supported by quantum chemical calculations. It appears that both methyl groups are not essential for the isomerization reaction and are not likely involved in formation of a transition stage during the isomerization process.  相似文献   

10.
The biosynthesis of 11-cis-retinol in the retinal pigment epithelium requires two consecutive enzymatic reactions. The first involves the esterification of all-trans-retinol by lecithin retinol acyltransferase (LRAT). The second reaction involves the direct conversion of an all-trans-retinyl ester into 11-cis-retinol by an isomerase-like enzyme. This latter reaction couples the free energy of hydrolysis of an ester to the thermodynamically uphill trans to cis conversion, thus providing the energy to drive the latter process. In this paper both enzymes are studied with respect to their substrate specificities to provide information on mechanism. The isomerase is shown to be highly specific with respect to the ionylidene ring system and substitution at C15, whereas sterically bulkier substituents at C9 and C11 are permitted. C5 and C13 demethyl retinoids are isomerized, removing from consideration isomerization mechanisms involving C-H abstraction at the C5 or C13 methyl groups of the retinoid. On the other hand, C9 demethyl retinoids are not isomerized. A C-H abstraction mechanism is unlikely at the C9 methyl group as well, because no kinetic deuterium isotope effect is found with all-trans-19,19,19-trideuterioretinoids and isomerization of unlabeled retinoids occurs without the incorporation of deuterium when the isomerization is performed in D2O. LRAT proved to be broadly specific for retinols but was relatively inert with other hydrophobic alcohols including cholesterol. The enzyme is also highly specific for phosphatidylcholine analogues versus other potential membranous acyl donors such as phosphatidylethanolamine and phosphatidylserine.  相似文献   

11.
Photoisomerization of 11-cis-retinal to all-trans-retinal and reduction to all-trans-retinol occur in photoreceptor outer segments whereas enzymatic esterification of all-trans-retinol, isomerization to 11-cis-retinol, and oxidation to 11-cis-retinal occur in adjacent cells. The processes are linked into a visual cycle by intercellular diffusion of retinoids. Knowledge of the mechanistic aspects of the visual cycle is very limited. In this study, we utilize chemical analysis of visual cycle retinoids to assess physiological roles for components inferred from in vitro experiments and to understand why excised mouse eyes fail to regenerate their bleached visual pigment. Flash illumination of excised mouse eyes or eyecups, in which regeneration of rhodopsin does not occur, produced a block in the visual cycle after all-trans-retinal formation; constant illumination of eyecups produced a block in the cycle after all-trans-retinol formation; and constant illumination of whole excised eyes resulted in a block of the cycle after formation of all-trans-retinyl ester. These blocks emphasize the role of cellular metabolism in the visual cycle. Interphotoreceptor retinoid-binding protein (IRBP) has been postulated to play a role in intercellular retinoid transfer in the retina; however, the rates of recovery of 11-cis-retinal and of regeneration of rhodopsin in the dark in IRBP-/- mice were very similar to those found with wild-type (wt) mice. Thus, IRBP is necessary for photoreceptor survival but is not essential for a normal rate of visual pigment turnover. Arrestin forms a complex with activated rhodopsin, quenches its activity, and affects the release of all-trans-retinal in vitro. The rate of recovery of 11-cis-retinal in arrestin-/- mice was modestly delayed relative to wt, and the rate of rhodopsin recovery was approximately 80% of that observed with wt mice. Thus, the absence of arrestin appeared to have a minor effect on the kinetics of the visual cycle.  相似文献   

12.
Gollapalli DR  Maiti P  Rando RR 《Biochemistry》2003,42(40):11824-11830
RPE65 is a major protein of unknown function found associated with the retinyl pigment epithelial (RPE) membranes [Hamel, C. P., Tsilou, E., Pfeffer, B. A., Hooks, J. J., Detrick, B., and Redmond, T. M. (1993) J. Biol. Chem. 268, 15751-15757; Bavik, C. O., Levy, F., Hellman, U., Wernstedt, C., and Eriksson, U. (1993) J. Biol. Chem. 268, 20540-20546]. RPE65 knockouts fail to synthesize 11-cis-retinal, the chromophore of rhodopsin, and accumulate all-trans-retinyl esters in the RPE. Previous studies have also shown that RPE65 is specifically labeled with all-trans-retinyl ester based affinity labeling agents, suggesting a retinyl ester binding role for the protein. In the present work, we show that purified RPE65 binds all-trans-retinyl palmitate (tRP) with a K(D) = 20 pM. These quantitative experiments are performed by measuring the quenching of RPE65 fluorescence by added tRP. The binding for tRP is highly specific because 11-cis-retinyl palmitate binds with a K(D) = 14 nM, 11-cis-retinol binds with a K(D) = 3.8 nM, and all-trans-retinol (vitamin A) binds with a K(D) = 10.8 nM. This stereospecificity for tRP is to be compared to the binding of retinoids to BSA, where virtually no discrimination is found in the binding of the same retinoids. This work provides further evidence that RPE65 functions by binding to and mobilizing the highly hydrophobic all-trans-retinyl esters, allowing them to enter the visual cycle.  相似文献   

13.
We have previously shown that membranes from the retinal pigment epithelium can transform added all-trans-retinol into a mixture of 11-cis-retinoids, demonstrating the "missing reaction" in the visual cycle for the first time (Bernstein, P. S., Law, W. C., and Rando, R. R. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 1849-1853). In this article, this isomerase activity is further characterized. Double-label experiments with [15-3H]- and [15-14C]all-trans-retinol as the substrate show that the tritium label is retained in the 11-cis-retinol and 11-cis-retinyl palmitate products. This requires that isomerization occur at the alcohol level of oxidation. All-trans-retinyl esters, such as the palmitate, acetate, butyrate, and hexanoate esters, are not directly transformed into their 11-cis counterparts by the membranes. The data are consistent with the presence of an all-trans-retinol isomerase enzyme system or enzyme complex, which produces 11-cis-retinol. Other isomeric retinols were tested for substrate activity. Neither 9-cis-retinol(al) nor 13-cis-retinol were processed by the isomerase. Since the membranes containing the isomerase possess other retinol metabolizing activities, such as retinyl ester synthetase and dehydrogenase activities, further purification was attempted. Appreciable quantities of all detergents tested led to the disappearance of isomerase activity, and high salt or EDTA did not dissociate isomerase activity from the membranes. However, extensive sonication of the membranes did produce a 100,000 x g supernatant fraction of light membranes depleted of other all-trans-retinol processing activities. The isomerase activity in these membranes was saturable with all-trans-retinol, as required for a biologically significant process, and showed a Vmax of 5 pmol/h/mg of protein, a KM of 0.8 microM, and a pH optimum of 8. The isomerase was destroyed by proteinase K, by phospholipase C, by heating, or by ethanol at concentrations greater than 1%. The addition of high energy compounds, such as MgATP, MgGTP, or palmitoyl-CoA, did not appear to stimulate isomerase activity in the 100,000 x g supernatant.  相似文献   

14.
Bok D  Ruiz A  Yaron O  Jahng WJ  Ray A  Xue L  Rando RR 《Biochemistry》2003,42(20):6090-6098
Lecithin retinol acyltransferase (LRAT) catalyzes the esterification of all-trans-retinol into all-trans-retinyl ester, an essential reaction in the vertebrate visual cycle. Since all-trans-retinyl esters are the substrates for the isomerization reaction that generates 11-cis-retinoids, this esterification reaction is essential in the operation of the visual cycle. In addition, LRAT is the founder member of a series of proteins, which are of novel sequence and have unknown functions. Native LRAT is an integral membrane protein and has never been purified. To obtain a pure LRAT, the N- and C-transmembrane termini were deleted and replaced with a poly His tag for the purpose of purification. This truncated form of LRAT, referred to as tLRAT, has been expressed in bacteria and fully purified. tLRAT is catalytically active and processes all-trans-retinol at least 10-fold more efficiently than 11-cis-retinol, the precursor to the visual chromophore. While tLRAT can be robustly expressed in bacteria, it requires detergent for extraction, as the enzyme still contains hydrophobic domains, which may interact. Indeed, tLRAT can oligomerize and forms dimers. Native LRAT also forms functional homodimers. These studies pave the way for the preparation of large-scale amounts of pure tLRAT for further mechanistic and structural studies.  相似文献   

15.
Lecithin-retinol acyltransferase (LRAT), an enzyme present mainly in the retinal pigmented epithelial cells and liver, converts all-trans-retinol into all-trans-retinyl esters. In the retinal pigmented epithelium, LRAT plays a key role in the retinoid cycle, a two-cell recycling system that replenishes the 11-cis-retinal chromophore of rhodopsin and cone pigments. We disrupted mouse Lrat gene expression by targeted recombination and generated a homozygous Lrat knock-out (Lrat-/-) mouse. Despite the expression of LRAT in multiple tissues, the Lrat-/- mouse develops normally. The histological analysis and electron microscopy of the retina for 6-8-week-old Lrat-/- mice revealed that the rod outer segments are approximately 35% shorter than those of Lrat+/+ mice, whereas other neuronal layers appear normal. Lrat-/- mice have trace levels of all-trans-retinyl esters in the liver, lung, eye, and blood, whereas the circulating all-trans-retinol is reduced only slightly. Scotopic and photopic electroretinograms as well as pupillary constriction analyses revealed that rod and cone visual functions are severely attenuated at an early age. We conclude that Lrat-/- mice may serve as an animal model with early onset severe retinal dystrophy and severe retinyl ester deprivation.  相似文献   

16.
The efficient recycling of the chromophore of visual pigments, 11-cis-retinal, through the retinoid visual cycle is an essential process for maintaining normal vision. RPE65 is the isomerohydrolase in retinal pigment epithelium and generates predominantly 11-cis-retinol (11cROL) and a minor amount of 13-cis-retinol (13cROL), from all-trans-retinyl ester (atRE). We recently identified and characterized novel homologues of RPE65, RPE65c, and 13-cis-isomerohydrolase (13cIMH), which are expressed in the zebrafish inner retina and brain, respectively. Although these two homologues have 97% identical amino acid sequences, they exhibit distinct product specificities. Under the same assay conditions, RPE65c generated predominantly 11cROL, similar to RPE65, while 13cIMH generated exclusively 13cROL from atRE substrate. To study the impacts of the key residues determining the isomerization product specificity of RPE65, we replaced candidate residues by site-directed mutagenesis in RPE65c and 13cIMH. Point mutations at residues Tyr58, Phe103, and Leu133 in RPE65c resulted in significantly altered isomerization product specificities. In particular, our results showed that residue 58 is a primary determinant of isomerization specificity, because the Y58N mutation in RPE65c and its reciprocal N58Y mutation in 13cIMH completely reversed the respective enzyme isomerization product specificities. These findings will contribute to the elucidation of molecular mechanisms underlying the isomerization reaction catalyzed by RPE65.  相似文献   

17.
Photon capture by a rhodopsin pigment molecule induces 11-cis to all-trans isomerization of its retinaldehyde chromophore. To restore light sensitivity, the all-trans-retinaldehyde must be chemically re-isomerized by an enzyme pathway called the visual cycle. Rpe65, an abundant protein in retinal pigment epithelial (RPE) cells and a homolog of beta-carotene dioxygenase, appears to play a role in this pathway. Rpe65-/- knockout mice massively accumulate all-trans-retinyl esters but lack 11-cis-retinoids and rhodopsin visual pigment in their retinas. Mutations in the human RPE65 gene cause a severe recessive blinding disease called Leber's congenital amaurosis. The function of Rpe65, however, is unknown. Here we show that Rpe65 specifically binds all-trans-retinyl palmitate but not 11-cis-retinyl palmitate by a spectral-shift assay, by co-elution during gel filtration, and by co-immunoprecipitation. Using a novel fluorescent resonance energy transfer (FRET) binding assay in liposomes, we demonstrate that Rpe65 extracts all-trans-retinyl esters from phospholipid membranes. Assays of isomerase activity reveal that Rpe65 strongly stimulates the enzymatic conversion of all-trans-retinyl palmitate to 11-cis-retinol in microsomes from bovine RPE cells. Moreover, we show that addition of Rpe65 to membranes from rpe65-/- mice, which possess no detectable isomerase activity, restores isomerase activity to wild-type levels. Rpe65 by itself, however, has no intrinsic isomerase activity. These observations suggest that Rpe65 presents retinyl esters as substrate to the isomerase for synthesis of visual chromophore. This proposed function explains the phenotype in mice and humans lacking Rpe65.  相似文献   

18.
Visual perception begins with the absorption of a photon by an opsin pigment, inducing isomerization of its 11-cis-retinaldehyde chromophore. After a brief period of activation, the resulting all-trans-retinaldehyde dissociates from the opsin apoprotein rendering it insensitive to light. Restoring light sensitivity to apo-opsin requires thermal re-isomerization of all-trans-retinaldehyde to 11-cis-retinaldehyde via an enzyme pathway called the visual cycle in retinal pigment epithelial (RPE) cells. Vertebrates can see over a 10(8)-fold range of background illumination. This implies that the visual cycle can regenerate a visual chromophore over a similarly broad range. However, nothing is known about how the visual cycle is regulated. Here we show that RPE cells, functionally or physically separated from photoreceptors, respond to light by mobilizing all-trans-retinyl esters. These retinyl esters are substrates for the retinoid isomerase and hence critical for regenerating visual chromophore. We show in knock-out mice and by RNA interference in human RPE cells that this mobilization is mediated by a protein called "RPE-retinal G protein receptor" (RGR) opsin. These data establish that RPE cells are intrinsically sensitive to light. Finally, we show that in the dark, RGR-opsin inhibits lecithin:retinol acyltransferase and all-trans-retinyl ester hydrolase in vitro and that this inhibition is released upon exposure to light. The results of this study suggest that RGR-opsin mediates light-dependent translocation of all-trans-retinyl esters from a storage pool in lipid droplets to an "isomerase pool" in membranes of the endoplasmic reticulum. This translocation permits insoluble all-trans-retinyl esters to be utilized as substrate for the synthesis of a new visual chromophore.  相似文献   

19.
B S Fulton  R R Rando 《Biochemistry》1987,26(24):7938-7945
Previously, we have shown that retina/pigment epithelium membranes from the amphibian can synthesize 11-cis-retinoids from added all-trans-retinol [Bernstein, P.S., Law, W.C., & Rando, R.R. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 1849-1853]. The activity was largely localized to the pigment epithelium. Here it is shown that, in the bovine system, the activity resides exclusively in the membranes of the pigment epithelium. Subcellular fractionation does not reveal a particular organelle where the activity resides. Washed bovine pigment epithelium membranes, which are devoid of retinoid redox activity, convert added all-trans-retinol to a mixture of 11-cis-retinol and its palmitate ester. all-trans-Retinal and all-trans-retinyl palmitate are not converted into 11-cis-retinoids by the membranes. The membranes show substantial ester synthetase activity, producing large amounts of all-trans-retinyl palmitate. Diverse chemical reagents, such as ethanol, hydroxylamine, and p-(hydroxymercuri)benzoate, inhibit both ester synthetase and isomerase activities in a roughly parallel fashion, suggesting a possible functional linkage between the two activities.  相似文献   

20.
Mata NL  Ruiz A  Radu RA  Bui TV  Travis GH 《Biochemistry》2005,44(35):11715-11721
Vertebrate retinas contain two types of light-detecting cells. Rods subserve vision in dim light, while cones provide color vision in bright light. Both contain light-sensitive proteins called opsins. The light-absorbing chromophore in most opsins is 11-cis-retinaldehyde, which is isomerized to all-trans-retinaldehyde by absorption of a photon. Restoration of light sensitivity requires chemical re-isomerization of retinaldehyde by an enzymatic pathway called the visual cycle in the retinal pigment epithelium. The isomerase in this pathway uses all-trans-retinyl esters synthesized by lecithin retinol acyl transferase (LRAT) as the substrate. Several lines of evidence suggest that cone opsins regenerate by a different mechanism. Here we demonstrate the existence of two catalytic activities in chicken retinas. The first is an isomerase activity that effects interconversion of all-trans-retinol and 11-cis-retinol. The second is an ester synthase that effects palmitoyl coenzyme A-dependent synthesis of all-trans- and 11-cis-retinyl esters. Kinetic analysis of these two activities suggests that they act in concert to drive the formation of 11-cis-retinoids in chicken retinas. These activities may be part of a new visual cycle for the regeneration of chromophores in cones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号