首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Radio frequency energy (RFE) thermal chondroplasty has been a widely-utilized method of cartilage debridement in the past. Little is known regarding its effect on tissue mechanics. This study investigated the acute biomechanical effects of bipolar RFE treatment on human chondromalacic cartilage. Articular cartilage specimens were extracted (n?=?50) from femoral condyle samples of patients undergoing total knee arthroplasty. Chondromalacia was graded with the Outerbridge classification system. Tissue thicknesses were measured using a needle punch test. Specimens underwent pretreatment load-relaxation testing using a spherical indenter. Bipolar RFE treatment was applied for 45?s and the indentation protocol was repeated. Structural properties were derived from the force-time data. Mechanical properties were derived using a fibril-reinforced biphasic cartilage model. Statistics were performed using repeated measures ANOVA. Cartilage thickness decreased after RFE treatment from a mean of 2.61?mm to 2.20?mm in Grade II, II-III, and III specimens (P?相似文献   

2.
The influence of the contractile tension rise time on isokinetic force-angle records has been inferred from static force-time curves but has not been experimentally determined. The purpose of this study is thus to describe the influence of the contractile rise time on the force-angle curves produced during maximal voluntary, acceleration controlled, isokinetic plantarflexions at 30 degrees/s. Since we could not measure directly the period of force development unbiased by changes in muscle length during the movements, we devised an experimental strategy which allowed the computation of the dynamic force-time curve. Thus in five normal men, we first recorded force-angle curves produced during maximal voluntary plantarflexion movements preceded by maximal static pre-loading (D:-10 degrees Max) in order to eliminate the period of tension development from the force-angle record. Next, we recorded force-angle curves produced during maximal voluntary contractions initiated from two different starting angles without pre-loading (D:-10 degrees Min and D:0 degrees Min) to include the period of tension rise. The dynamic force-time curve was computed by correcting these force-angle curves (D:-10 degrees Min and D:0 degrees Min) for the hypothetical loss in force due to muscle shortening. We compared the relative (to remove the effects of force magnitude) computed dynamic force-time curves with relative static force-time curves measured at three different angles. We found the shape and several other parameters of all three static and both computed dynamic force-time curves to be similar (p greater than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The contractile properties of the tibial anterior (TA) of Wistar rats were measured by means of a multipurpose testing machine. The muscle was isolated from the connective tissues, preserving the proximal insertion. The distal tendon was transected and fixed to the machine actuator. The leg was inmobilised using a pin drilled through the femoral condyle. In this way the force response was studied in vivo at different constant lengths for some voltages and frequencies. Mathematical functions are proposed for adjusting the force-length, force-frequency and force-time relations. The model includes a novel formulation for the depression response during muscle tetanisation.  相似文献   

4.
A generic finite element (FE) model of the lower limb was used to study the knee response in-vivo during a one-legged hop. The approach uses an explicit FE code and a combination of estimated muscle forces and measured three-dimensional tibio-femoral kinematics and ground reaction force as input to the FE model. The sensitivity of the simulated tibio-femoral response to variations of key geometric and material parameters was investigated by performing a total of 38 different simulations. The amplitudes of both kinematic and kinetic responses were affected by the change of these parameters. For the current approach, the results suggest that while cartilage mechanical and geometric properties are very important for the estimation of tibio-femoral cartilage pressure, they have limited effects on the overall kinematic response. The study may help to better define the relative importance of modeling parameters for the development of subject-specific models.  相似文献   

5.
To explore the role of the brush-like proteoglycan, aggrecan, in the shear behavior of cartilage tissue, we measured the lateral resistance to deformation of a monolayer of chemically end-attached cartilage aggrecan on a microcontact printed surface in aqueous NaCl solutions via lateral force microscopy. The effects of bath ionic strength (IS, 0.001-1.0 M) and lateral displacement rate (approximately 1-100 microm/s) were studied using probe tips functionalized with neutral hydroxyl-terminated self-assembled alkanethiol monolayers. Probe tips having two different end-radii (R approximately 50 nm and 2.5 microm) enabled access to different length-scales of interactions (nano and micro). The measured lateral force was observed to depend linearly on the applied normal force, and the lateral force to normal force proportionality constant, mu, was calculated. The value mu increased (from 0.03 +/- 0.01 to 0.11 +/- 0.01) with increasing bath IS (0.001-1.0 M) for experiments using the microsized tip due to the larger compressive strain of aggrecan that resulted from increased IS at constant compressive force. With the nanosized tip, mu also increased with IS but by a smaller amount due to the fewer number of aggrecan involved in shear deformation. The variations in lateral force as a function of applied compressive strain epsilon(n) and changes in bath IS suggested that both electrostatic and nonelectrostatic interactions contributed significantly to the shear deformational behavior of the aggrecan layers. While lateral force did not vary with lateral displacement rate at low IS, where elastic-like electrostatic interactions between aggrecan dominated, lateral force increased significantly with displacement rate at physiological and higher IS, suggestive of additional viscoelastic and/or poroelastic interactions within the aggrecan layer. These data provide insights into molecular-level deformation of aggrecan macromolecules that are important to the understanding of cartilage behavior.  相似文献   

6.
The indentation stiffness of knee articular cartilage subjected to strenuous physical training (SPT: treadmill running 20 km day−1 for 15 weeks, n = 6) of young Beagles was tested and compared to that obtained from age-matched (55 weeks, n = 9) controls. The mathematical solution for the shear modulus, as determined from indentation of an elastic layer bonded to a rigid half space, was extended to small Poisson's ratios and applied to the analysis of cartilage response after a step stress (0.39 MPa) application. In these measurements with an impervious, plane-ended indenter, the equilibrium deformation was systematically greater than values predicted from the instant response by the linear biphasic theory. Therefore, the accurate determination of Poisson's ratio from the creep curves was not possible. The mean shear modulus (calculated by using the deformation at 900 s after load application and assuming a constant Poisson's ratio of 0.40 for the matrix) of canine knee articular cartilage was 0.37 MPa. While the cartilage thickness was not affected by SPT, the cartilage of the lateral tibial plateau was stiffer (13.3%, p<0.05) than that in controls. However, in the femoral condyles, the stiffness was at the control level or even below. Our results on cartilage structure and properties suggest that SPT, in contrast to our previous findings with moderate training, does not necessarily improve the biological properties of articular cartilage in young animals.  相似文献   

7.
8.
Seven male elite strength-trained athletes (SA) from different weight categories, six elite sprinters (SPA) and seven elite endurance-trained athletes (EA) volunteered as subjects for examination of their muscle cross-sectional area (CSA), maximal voluntary isometric force, force-time and relaxation-time characteristics of the leg extensor muscles. The SA group demonstrated slightly greater CSA and maximal absolute strength than the SPA group, while the EA group demonstrated the smallest values both in CSA and especially in maximal strength (p less than 0.05). When the maximal forces were related to CSA of the muscles, the mean value for the SA group of 60.8 +/- 10.0 N.cm-2 remained slightly greater than that recorded in the SPA group 55.0 +/- 3.1 N.cm-2 and significantly greater (p less than 0.05) than that recorded in the EA group 49.3 +/- 4.0 N.cm-2. The mean value in the SPA was also significantly greater (p less than 0.05) than that of the EA group. The isometric force-time curves differed between the groups (p less than 0.05-0.01) so that the times taken to produce the same absolute force were the shortest in the SPA group and the longest in the EA group. With force expressed as a percentage of the maximum, the force-time curves showed that the SPA group demonstrated still shorter times to a given value (p less than 0.05), especially at the lower force levels, than the other two groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The present study was undertaken with two objectives in view. The first was to distinguish between the "instantaneous" deformation and creep of articular cartilage when subjected to a step loading in unconfined compression. This was done by observing changes in the specimen's diameter rather than its thickness. The second objective was to investigate experimentally the anisotropic behaviour of cartilage in a compressive loading mode, corresponding to the physiological situation. An apparatus was thus developed and constructed which enabled us to follow the "instantaneous" changes of the surface area of the sample as the latter was being loaded in unconfined compression. Specimens of human articular cartilage from normal femoral heads and condyles were tested. Full thickness specimens were tested with and without the underlying bone, as well as partial thickness specimens, characterizing the different zones of cartilage. Solutions of different ionic strength were used to vary the osmotic stress and specimens covering a considerable range of proteoglycan concentrations were selected. The effects of hydration and proteoglycan removal on the "instantaneous" deformation were also studied. The "instantaneous" deformation was found to be of a strongly anisotropic nature in all zones. The deformation was always smaller along the Indian-ink prick pattern than at 90 degrees to it, and this effect was most pronounced in the superficial zone of cartilage. The results reveal an analogy with the tensile properties of cartilage and indicate that the collagen network is mainly responsible for controlling the "instantaneous" deformation. The proteoglycans play an indirect role by modulating the stiffness of the collagen network through their osmotic pressure.  相似文献   

10.
We previously reported an ultrasound method for measuring the depth-dependent equilibrium mechanical properties of articular cartilage using quasi-static compression. The objective of this paper was to introduce our recent development for nondestructively measuring the transient depth-dependent strains of full-thickness articular cartilage specimens prepared from bovine patellae. A 50 MHz focused ultrasound transducer was used to collect ultrasound echoes from articular cartilage specimens (n=8) and sponge phantoms with open pores (n=10) during tests of compression and subsequent stress-relaxation. The transient displacements of the tissues at different depths along the compression direction were calculated from the ultrasound echoes using a cross-correlation tracking technique. An LVDT sensor and a load cell were used to measure the overall deformation of the tissue and the applied force, respectively. Results showed that the tissues inside the cartilage layer continued to move during the stress-relaxation phase after the compression was completed. In the equilibrium state, the displacements of the cartilage tissues at the depths of 1/4, 1/2, and 3/4 of the full-thickness reduced by 51%+/-22%, 54%+/-17%, and 50+/-17%, respectively, in comparison with its peak value. However, no similar phenomenon was observed in the sponge phantoms. Our preliminary results demonstrated that this ultrasound method may provide a potential tool for the nondestructive measurement of the transient depth-dependent processes involved in biological and bioengineered soft tissues as well as soft biomaterials under dynamic loading.  相似文献   

11.
The purpose of this investigation is to develop an accurate experimental procedure to measure the elastic properties of articular cartilage in uniaxial tension. Standardized, dumbbell shaped specimens, 250–325 μm thick, were taken from the surface, middle, and deep zones of the articular cartilage at 0°, 45°, and 90° from axis of the cleavage line pattern for the study of the zonal and directional properties of articular cartilage. A total of 75 specimens were tested to failure in this study. The use of a video dimensional analyzer system in this study makes accurate monitoring of the deformation of articular cartilage specimens possible. Nonlinear stress-strain relationships of the articular cartilage samples were mathematically approximated by exponential law similar to Fung (1967). Higher stiffness for the 0° specimens in the surface and middle zones was found. The experimental findings are in general agreement with the interpretations of low magnification scanning electron microscopy.  相似文献   

12.
During functional electrical stimulation (FES), both the frequency and intensity can be increased to increase muscle force output and counteract the effects of muscle fatigue. Most current FES systems, however, deliver a constant frequency and only vary the stimulation intensity to control muscle force. This study compared muscle performance and fatigue produced during repetitive electrical stimulation using three different strategies: (1) constant pulse-duration and stepwise increases in frequency (frequency-modulation); (2) constant frequency and stepwise increases in pulse-duration (pulse-duration-modulation); and (3) constant frequency and pulse-duration (no-modulation). Surface electrical stimulation was delivered to the quadriceps femoris muscles of 12 healthy individuals and isometric forces were recorded. Muscle performance was assessed by measuring the percent changes in the peak forces and force-time integrals between the first and the last fatiguing trains. Muscle fatigue was assessed by measuring percent declines in peak force between the 60Hz pre- and post-fatigue testing trains. The results showed that frequency-modulation showed better performance for both peak forces and force-time integrals in response to the fatiguing trains than pulse-duration-modulation, while producing similar levels of muscle fatigue. Although frequency-modulation is not commonly used during FES, clinicians should consider this strategy to improve muscle performance.  相似文献   

13.
To investigate the influence of strength training on the mechanical characteristics of human skeletal muscle, 14 male subjects went through training of combined heavy concentric and eccentric contractions three times a week for 16 weeks. The strength training program consisted mainly of dynamic exercises for leg extensors with loads of 80 to 120% of one maximum repetition. The force-time curves produced during various vertical jumps were the basis for calculation of various mechanical parameters. In addition to a great increase (p less than 0.001) in maximal isometric force, heavy resistance strength training also caused significant (p less than 0.05-0.01) increases in heights and in various mechanical parameters in positive work phases of vertical and drop jumps. The increase in positive force during a fast dynamic contraction was correlated (p less than 0.01) with the reduced time to produce a certain submaximal force level in isometric condition. No changes in the elastic properties of the muscle were observed as judged from the difference between the counter-movement and squat jumps. When the training was followed by the 8-week detraining period a great decrease (p less than 0.001) in maximal force took place, but only minor changes (ns) were observed in fast force production.  相似文献   

14.
The assessment of force plate measurements obtained from subjects with a pathological gail is normally carried out by a visual inspection of the force-time curves produced by the plate. It is shown that a valuable addition to that inspection is the derivation from the curves of Legendre polynomial coefficients, the first five coefficients being sufficient to indicate clearly, specific osteoarthritic abnormalities.  相似文献   

15.
Effects of fatigue produced by a maintained 60% isometric loading on electromyographic and isometric force-time and relaxation-time characteristics of human skeletal muscle were studied in 21 males accustomed to strength training. Fatigue loading resulted in a slight but not significant change in the maximal integrated EMG of a maximal isometric contraction, and a large decrease (20.4 +/- 6.3%, p less than 0.001) in maximal force. Fatigue loading increased (p less than 0.05-0.01) neural activation of the muscles during rapidly produced submaximal isometric forces, but had a considerable adverse effect (p less than 0.001) on the corresponding force-time characteristics. Correlations between the relative changes after fatigue in the IEMG/force ratio at the maximal force level, and in the IEMG/force ratios of the early phases of the force-time curve were not significant, but gradually became significant (p less than 0.01) at higher force levels. The average IEMG of the muscles in the relaxation phase of contraction remained unaltered by fatigue, while a marked deleterious change in the relaxation-time variables (p less than 0.001) occurred concomitantly. During the subsequent 3 min rest period considerable (12.1 +/- 7.0%, p less than 0.001) recovery was noted in the maximal force, with smaller (insignificant or p less than 0.05-0.01) changes in the force-time and relaxation-time variables, while the average IEMG of force production decreased (p less than 0.01-0.001). The present findings suggest that fatigue leading to a worsening in force-time, in maximal force and in the relaxation-time parts of a maximal isometric contraction might take place primarily in the contractile processes.  相似文献   

16.
Young's modulus, elastic and plastic deformation, mechanical hardness and load at failure were determined for low-grade degenerated hyaline cartilage in a porcine model. Osteochondral plugs from the medial condyle of 30 female pigs were used. Cartilage defects were classified using the International Cartilage Repair Society (ICRS) protocol. Mechanical hardness was measured using a Shore A testing device. Total stiffness and plastic deformation was evaluated in the range 50-200 N using a 5-mm indenter. The load at failure was then determined. ICRS grade I specimens showed significantly lower stiffness than grade 0 specimens. ICRS grade 0 specimen showed no significant plastic deformation within the load range 25-100 N. In degenerated cartilage, plastic deformation started at a significantly lower load (50 N). The Young's modulus at 25 N in ICRS grade 0 specimens (18.8 MPa) was significantly higher than in grade I (11.1 MPa) or grade II (10.5 MPa) specimens. Intact cartilage showed significantly higher tension at failure and mechanical Shore A hardness. Young's modulus and tension at failure showed strong correlation. Cartilage degeneration is associated with a significant loss of elasticity and mechanical stress resistance. Shore hardness measurement is an adequate method for rapid biomechanical evaluation of cartilage specimens.  相似文献   

17.
The lung extracellular matrix changes rapidly with maturation. To further our understanding of the mechanisms underlying lung tissue mechanics, we studied age-related changes in mechanical properties in lung parenchymal strips from baby (10-15 days old), young ( approximately 3 wk old), and adult ( approximately 8 wk old) rats. Subpleural strips were cut and suspended in a fluid-filled organ bath. One end of the strip was attached to a force transducer and the other to a servo-controlled lever arm. Measurements of force (F) and length (L) were recorded during sinusoidal oscillations of various amplitudes and frequencies. Resistance modulus (R) and elastance modulus (E) were estimated by fitting the equation of motion to changes in stress (T) and stretch ratio (lambda). Hysteresivity (eta) was calculated as follows: eta = (R/E)2pif, where f is frequency. Slow-cycling T-lambda curves were measured by applying a constant slow length change. Finally, quasi-static T-lambda curves were measured as stress was increased from 0 to 6 kPa and back to 0 kPa in stepwise increments. Our results showed that lung tissue from immature rats was stiffer and less hysteretic than tissue from more mature animals. In addition, tissue from baby animals behaved in a manner compatible with an increased vulnerability to plastic change.  相似文献   

18.
In this study, we apply a dynamic atomic force microscopy (AFM) technique, frequency modulation (FM) detection, to the mechanical unfolding of single titin I27 domains and make comparisons with measurements made using the AFM contact or static mode method. Static mode measurements revealed the well-known force transition occurring at 100-120 pN in the first unfolding peak, which was less clear, or more often absent, in the subsequent unfolding peaks. In contrast, some FM-AFM curves clearly resolved a force transition associated with each of the unfolding peaks irrespective of the number of observed unfolded domains. As expected for FM-AFM, the frequency shift response of the main unfolding peaks and their intermediates could only be detected when the oscillation amplitudes used were smaller than the interaction lengths being measured. It was also shown that the forces measured for the dynamical interaction of the FM-AFM technique were significantly lower than those measured using the static mode. This study highlights the potential for using dynamic AFM for investigating biological interactions, including protein unfolding and the detection of novel unfolding intermediates.  相似文献   

19.
Cracks in articular cartilage are a common sign of joint damage, but failure properties of cartilage are poorly understood, especially for damage initiation. Cartilage failure may be further complicated by rate-dependent and depth-dependent properties, including the compliant surface layer. Existing blunt impact methods do not resolve local cartilage inhomogeneities and traditional fracture mechanics tests induce crack blunting and may violate underlying assumptions of linear elasticity. To address this knowledge gap, we developed and applied a method to indent cartilage explants with a sharp blade and initiate damage across a range of loading rates (strain rates 0.5%/s–500%/s), while recording local sample deformation and strain energy fields using confocal elastography. To investigate the importance of cartilage’s compliant surface, we repeated the experiment for samples with the surface removed. Bulk data suggest a critical force at which the tissue cuts, but local strains reveals that the deformation the sample can sustain before reaching this force is significantly higher in the surface layer. Bulk and local results also showed significant rate dependence, such that samples were easier to cut at faster speeds. This result highlights the importance of rate for understanding cracks in cartilage and parallels recent studies of rate-dependent failure in hydrogels. Notably, local sample deformation fields were well fit by classical Hookean elasticity. Overall, this study illustrates how local and global measurements surrounding the initiation of damage in articular cartilage can be combined to reveal the importance of cartilage’s zonal structure in protecting against failure across physiologically relevant loading rates.  相似文献   

20.
It has been frequently reported that vertical impact force peaks during running change only minimally when changing the midsole hardness of running shoes. However, the underlying mechanism for these experimental observations is not well understood. An athlete has various possibilities to influence external and internal forces during ground contact (e.g. landing velocity, geometrical alignment, muscle tuning, etc.). The purpose of this study was to discuss one possible strategy to influence external impact forces acting on the athlete's body during running, the strategy to change muscle activity (muscle tuning). The human body was modeled as a simplified mass-spring-damper system. The model included masses of the upper and the lower bodies with each part of the body represented by a rigid and a non-rigid wobbling mass. The influence of mechanical properties of the human body on the vertical impact force peak was examined by varying the spring constants and damping coefficients of the spring-damper units that connected the various masses. Two types of shoe soles were modeled using a non-linear force deformation model with two sets of parameters based on the force-deformation curves of pendulum impact experiments. The simulated results showed that the regulation of the mechanical coupling of rigid and wobbling masses of the human body had an influence on the magnitude of the vertical impact force, but not on its loading rate. It was possible to produce the same impact force peaks altering specific mechanical properties of the system for a soft and a hard shoe sole. This regulation can be achieved through changes of joint angles, changes in joint angular velocities and/or changes in muscle activation levels in the lower extremity. Therefore, it has been concluded that changes in muscle activity (muscle tuning) can be used as a possible strategy to affect vertical impact force peaks during running.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号