首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lactobacillus casei ATCC 393 was selected as an antigen delivery vehicle for mucosal immunization against porcine parvovirus (PPV) infection. A 64-kDa fragment of PPV major protective antigen VP2 protein was used as the parvovirus antigen model. A recombinant Lactobacillus expressing VP2 protein was constructed with plasmid pPG611.1, where expression and localization of the VP2 protein from recombinant Lc393-rPPV-VP2 was detected via sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Western blotting, and immunofluorescence. Both local mucosal and systemic immune responses against PPV were induced in BALB/c mice immunized orally with the recombinant Lactobacillus expressing VP2 protein. The induced antibodies demonstrated neutralizing effects on PPV infection. These data indicated that the use of recombinant lactobacilli could be a valuable strategy for future vaccine development of PPV.  相似文献   

2.
将分别编码猪细小病毒(PPV)主要免疫保护性抗原VP2蛋白与大肠杆菌不耐热肠毒素B亚单位(LTB)基因插入乳酸杆菌细胞表面表达载体pPG中, 成功构建了重组表达载体pPG-VP2-LTB, 将其电转化干酪乳杆菌Lactobacillus casei 393, 获得了表达猪细小病毒VP2-LTB融合蛋白的重组乳酸菌表达系统, 经2%乳糖诱导, SDS-PAGE和Western-blot检测表明, 有大小约78 kD的蛋白得到了表达, 具有与天然病毒蛋白一样的抗原特异性, 全细胞ELISA结果表明, LTB同  相似文献   

3.
将分别编码猪瘟病毒T细胞表位E290多肽和猪细小病毒主要保护性抗原VP2蛋白的重组基因插入干酪乳杆菌分泌型表达载体pPG中,构建了重组表达载体pPG-VP2-E290,将其电转化干酪乳杆菌Lactobacillus casei 393,获得了猪瘟病毒T细胞表位E290多肽与猪细小病毒VP2蛋白的乳酸菌共表达系统,经2%乳糖在MRS培养基中的诱导表达,对诱导表达的菌体及培养上清液进行SDS-PAGE检测表明,有约70kDa蛋白得到了表达,表达蛋白的大小与理论值相符。Western blot分析结果表明所表达的蛋白具有与天然病毒蛋白一样的抗原特异性。以诱导表达上清液作为抗原进行的间接ELISA实验也表明,重组的目的蛋白获得了分泌表达。将该重组干酪乳杆菌经口服接种途径免疫BALB/c小鼠,收集粪便样品检测小鼠产生抗PPV的特异性sIgA抗体,采集血液样本检测血清中抗PPV及抗E290的特异性IgG。结果表明分泌型的重组菌pPG-VP2-E290/L.casei 393免疫小鼠能够产生明显的抗体水平,为重组猪瘟与猪细小病毒乳酸菌口服活菌疫苗的研制奠定了重要的物质基础。  相似文献   

4.
猪细小病毒VP2蛋白在干酪乳杆菌表面的表达   总被引:3,自引:0,他引:3  
将编码猪细小病毒主要免疫保护性抗原VP2基因插入干酪乳杆菌细胞表面表达载体pPG中,构建了重组表达载体pPG-VP2,将其电转化干酪乳杆菌Lactobacillus casei 393,获得了表达猪细小病毒VP2蛋白的重组干酪乳杆菌系统,经2%乳糖在MRS培养基中的诱导表达,SDS-PAGE检测表明,有约74kD蛋白得到了表达,表达蛋白的大小与理论值相符。Western-blot结果分析表明,表达的蛋白可被鼠源PPV抗血清所识别,间接免疫荧光实验结果表明,所表达的蛋白能够在干酪乳杆菌菌体表面检测到。  相似文献   

5.

Background

Porcine parvovirus (PPV) VP2 gene has been successfully expressed in many expression systems resulting in self-assembly of virus-like particles (VLPs) with similar morphology to the native capsid. Here, a pseudorabies virus (PRV) system was adopted to express the PPV VP2 gene.

Methods

A recombinant PRV SA215/VP2 was obtained by homologous recombination between the vector PRV viral DNA and a transfer plasmid. Then recombinant virus was purified with plaque purification, and its identity confirmed by PCR amplification, Western blot and indirect immunofluorescence (IFA) analyses. Electronic microscopy of PRV SA215/VP2 confirmed self-assembly of both pseudorabies virus and VLPs from VP2 protein.

Results

Immunization of piglets with recombinant virus elicited PRV-specific and PPV-specific humoral immune responses and provided complete protection against a lethal dose of PRV challenges. Gilts immunized with recombinant viruses induced PPV-specific antibodies, and significantly reduced the mortality rate of (1 of 28) following virulent PPV challenge compared with the control (7 of 31). Furthermore, PPV virus DNA was not detected in the fetuses of recombinant virus immunized gilts.

Conclusions

In this study, a recombinant PRV SA215/VP2 virus expressing PPV VP2 protein was constructed using PRV SA215 vector. The safety, immunogenicity, and protective efficacy of the recombinant virus were demonstrated in piglets and primiparous gilts. This recombinant PRV SA215/VP2 represents a suitable candidate for the development of a bivalent vaccine against both PRV and PPV infection.
  相似文献   

6.
Hong Q  Qian P  Li XM  Yu XL  Chen HC 《Biotechnology letters》2007,29(11):1677-1683
Pseudorabies (PR), foot-and-mouth disease (FMD), and porcine parvovirus disease are three important infectious diseases in swine worldwide. The gene-deleted pseudorabies virus (PRV) has been used as a live-viral vector to develop multivalent genetic engineering vaccine. In this study, a recombinant PRV, which could co-express protein precursor P1-2A of FMDV and VP2 protein of PPV, was constructed using PRV TK/gE/LacZ+ mutant as the vector. After homologous recombination and plaque purification, recombinant virus PRV TK/gE/P1-2A-VP2 was acquired and identified. Immunogenicity, safety of the recombinant PRV and its protection against PRV were confirmed in a mouse model by indirect ELISA and serum neutralization test. The results show that the recombinant PRV is a candidate vaccine strain to develop a novel trivalent vaccine against PRV, FMDV and PPV in swine.  相似文献   

7.
《Journal of Asia》2019,22(4):1167-1172
Porcine parvovirus (PPV) is a significant causative agent of porcine reproductive failure, causing serious economic losses in the swine industry. PPV is a nonenveloped virus, and its capsid is assembled from three viral proteins (VP1, VP2, and VP3). The major capsid protein, VP2, is the main target for PPV neutralizing antibodies and vaccine development. In this study, PPV-VP2 protein was expressed in silkworm larvae, and its antigenicity and production were compared with those in B. mori cells (Bm5). The recombinant VP2 protein was expressed successfully in silkworm larvae and Bm5 cells with a size of approximately 64 kDa. The formation of virus-like particles (VLPs) by recombinant PPV-VP2 was confirmed through transmission electron microscopy. The recombinant PPV-VP2 protein assembled into spherical particles with diameters ranging from 20 to 22 nm. The antigenicity of PPV-VLPs was comparatively analyzed between Bm5 cells and silkworm larvae by ELISA, hemagglutination and hemagglutination inhibition assays. Consequently, it was confirmed that the PPV-VLPs produced in the silkworm larvae were more antigenic than VLPs produced in Bm5 cells. Therefore, it is expected that economical and effective vaccine development will be possible by mass production of PPV-VLPs in silkworm larvae.  相似文献   

8.
A nontoxic mutant diphtheria toxin fragment A (DTA) was genetically fused in single, double, or triple copy to the major surface protein antigen P1 (SpaP) and surface expressed in Streptococcus gordonii DL-1. The expression was verified by Western immunoblotting. Mouse antisera raised against the recombinant S. gordonii recognized the native diphtheria toxinm suggesting the recombinant DTA was immunogenic. When given intranasally to mice with cholera toxin subunit B as the adjuvant, the recombinant S. gordonii expressing double copies of DTA (SpaP-DTA2) induced a mucosal immunoglobulin A response and a weak systemic immunoglobulin G response. S. gordonii SpaP-DTA2 was able to orally colonize BALB/c mice for a 15-week period and elicited a mucosal response, but a serum immunoglobulin G response was not apparent. The antisera failed to neutralize diphtheria toxin cytotoxicity in a Vero cell assay.  相似文献   

9.
Acute human parvovirus B19 infection is followed by an antibody response to the structural proteins of the viral capsid (VP1 and VP2). We used 80 sera collected from 58 erythema infectiosum and 6 transient aplastic crisis patients to test IgM and IgG antibodies against these two proteins in an immunofluorescence assay (IFA) using Sf9 cells infected with recombinant baculovirus expressing either VP1 or VP2 antigen. Although less sensitive than IgM capture enzyme immunoassay using native antigen (MACEIA), we could detect anti-VP1 or anti-VP2 IgM antibodies by IFA in 49 patients with acute infection (76.6%). Detection of IgG anti-VP1 and anti-VP2 by IFA, however, was as sensitive as IgG detection by indirect enzyme immunoassay. By applying IgG avidity IFA to sera of the 15 IgM IFA negative patients we were able to confirm acute infection in further 12 cases by IFA. Overall, acute infection was confirmed by IFA in 61 (95.3%) of the 64 patients.  相似文献   

10.
To develop a safe and effective mucosal vaccine against pathogenic influenza viruses, we constructed recombinant Lactobacillus casei strains that express conserved matrix protein 2 with (pgsA-CTA1-sM2/L. casei) or without (pgsA-sM2/L. casei) cholera toxin subunit A1 (CTA1) on the surface. The surface localization of the fusion protein was verified by cellular fractionation analyses, flow cytometry and immunofluorescence microscopy. Oral and nasal inoculations of recombinant L. casei into mice resulted in high levels of serum immunoglobulin G (IgG) and mucosal IgA. However, the conjugation of cholera toxin subunit A1 induced more potent mucosal, humoral and cell-mediated immune responses. In a challenge test with 10 MLD50 of A/EM/Korea/W149/06(H5N1), A/Puerto Rico/8/34(H1N1), A/Aquatic bird /Korea/W81/2005(H5N2), A/Aquatic bird/Korea/W44/2005(H7N3), and A/Chicken/Korea/116/2004(H9N2) viruses, the recombinant pgsA-CTA1-sM2/L. casei provided better protection against lethal challenges than pgsA-sM2/L. casei, pgsA/L. casei and PBS in mice. These results indicate that mucosal immunization with recombinant L. casei expressing CTA1-conjugated sM2 protein on its surface is an effective means of eliciting protective immune responses against diverse influenza subtypes.  相似文献   

11.
Human enterovirus 71 (EV71) is one of the major causative agents of hand, foot and mouth disease and is also associated with serious neurological diseases in children. Currently, there are no effective antiviral drugs or vaccines against EV71 infection. VP1, one of the major immunogenic capsid proteins of EV71, is widely considered to be the candidate antigen for an EV71 vaccine. In this study, VP1 of EV71 was expressed as a secretory protein with an N-terminal histidine tag in the methylotrophic yeast Pichia pastoris, and purified by Ni–NTA affinity chromatography. Immunogenicity and vaccine efficacy of the recombinant VP1 were assessed in mouse models. The results showed that the recombinant VP1 could efficiently induce anti-VP1 antibodies in BALB/c mice, which were able to neutralize EV71 viruses in an in vitro neutralization assay. Passive protection of neonatal mice further confirmed the prophylactic efficacy of the antisera from VP1 vaccinated mice. Furthermore, VP1 vaccination induced strong lymphoproliferative and Th1 cytokine responses. Taken together, our study demonstrated that the yeast-expressed VP1 protein retained good immunogenicity and was a potent EV71 vaccine candidate.  相似文献   

12.
Classical swine fever, caused by classical swine fever virus (CSFV), is a highly contagious disease that results in enormous economic losses in pig industries. The E2 protein is one of the main structural proteins of CSFV and is capable of inducing CSFV-neutralizing antibodies and cytotoxic T lymphocyte (CTL) activities in vivo. Thymosin α-1 (Tα1), an immune-modifier peptide, plays a very important role in the cellular immune response. In this study, genetically engineered Lactobacillus plantarum bacteria expressing CSFV E2 protein alone (L. plantarum/pYG-E2) and in combination with Tα1 (L. plantarum/pYG-E2-Tα1) were developed, and the immunogenicity of each as an oral vaccine to induce protective immunity against CSFV in pigs was evaluated. The results showed that recombinant L. plantarum/pYG-E2 and L. plantarum/pYG-E2-Tα1 were both able to effectively induce protective immune responses in pigs against CSFV infection by eliciting immunoglobulin A (IgA)-based mucosal, immunoglobulin G (IgG)-based humoral, and CTL-based cellular immune responses via oral vaccination. Significant differences (P < 0.05) in the levels of immune responses were observed between L. plantarum/pYG-E2-Tα1 and L. plantarum/pYG-E2, suggesting a better immunogenicity of L. plantarum/pYG-E2-Tα1 as a result of the Tα1 molecular adjuvant that can enhance immune responsiveness and augment specific lymphocyte functions. Our data suggest that the recombinant Lactobacillus microecological agent expressing CSFV E2 protein combined with Tα1 as an adjuvant provides a promising strategy for vaccine development against CSFV.  相似文献   

13.
Recombinant human parvovirus B19 virus-like particles (VLPs), a candidate vaccine, were produced using the insect cell (Sf-9)-baculovirus (AcNPV) expression system. The synthesis and assembly of the particles in Sf-9 cells are directed by double infections with one recombinant virus (bacVP1) expressing the parvovirus minor viral protein VP1 and a second virus (bacVP2) expressing the major viral protein VP2. Previous animal studies demonstrated that the polypeptide composition of the VLPs strongly affects the elicitation of virus neutralizing antibodies. The key factor controlling the production of an immunologically potent product in bioreactors was identified to be the multiplicity of infection (MOI) of bacVP1 and bacVP2 used for infection. A probabilistic model, which correlates well with the experimental results, was employed to facilitate the selection of MOIs and to provide a better understanding of the baculovirus co-infection process. A novel production process based on secondary infections was developed to ensure product consistency and to simplify large-scale logistics. The effects of other critical process parameters, such as temperature, dissolved oxygen concentration, lactate concentration, cell concentration at infection, and harvest time, were also investigated. (c) 1996 John Wiley & Sons, Inc.  相似文献   

14.
This paper describes a series of five pilot trials to test the feasibility of inducing a protective mucosal immune response against a non-blood-feeding intestinal nematode by delivery of antigens across the mucosal epithelium. A number of antigen preparations from Trichostrongylus colubriformis (viable larvae, larval homogenate and recombinant 17 kDa excretory-secretory protein) were delivered to the luminal surface of the mucosal epithelium overlying jejunal or rectal lymphoid tissue in cellulose or chitosan formulations. Significant protection was induced following delivery of viable larvae, larval homogenate or recombinant protein to the epithelium overlying rectal Peyer’s patches, and recombinant protein to the epithelium overlying jejunal Peyer’s patches. Viable larvae were associated with a jejunal IgE/IgG1 response, while the 17 kDa antigen was associated with a jejunal IgA response. The results demonstrate that delivery of Trichostrongylus native and recombinant antigens across the epithelium overlying rectal lymphoid patches can result in significant protective immunity even in the absence of adjuvant. They warrant the further investigation of appropriate mucosal delivery methods and adjuvants for induction of protective mucosal responses to stages and species of gastrointestinal helminths which do not ingest serum antibodies.  相似文献   

15.
Bluetongue (BT) is an arbovirus transmitted disease by bites of the genus Culicoides and infects wild and domestic ruminants particularly in sheep. As an important outer shell protein which defines BTV serotypes, VP2 has been shown to be an ideal target antigen for identification of different BTV serotypes. In order to prepare a monoclonal antibody (mAb) against the VP2 protein of BTV-4, the corresponding encoding gene L2 was divided into three segments and then cloned into pET-28a (+) and pMAL-c5X vectors to generate recombinant plasmids, which were expressed in Escherichia coli BL21 (DE3) as histidine (His)-tagged (His-4A/4B/4C) and maltose-binding protein (MBP)-tagged (MBP-4A/4B/4C) fusion proteins. After affinity purification of His-4A/4B/4C with Ni-NTA agarose and MBP-4A/4B/4C with amylose resin, His-4A/4B/4C were used to immunize BALB/mice and MBP-4A/4B/4C were used to screen for mAb-secreting hybridomas. Five hybridoma cell lines stably secreting mAbs against different VP2 segments were obtained, in which 4A-1G7 and 4B-1B6 could recognize BTV-4 and also cross-react with other BTV serotypes. With the joint action of the two mAbs, BTV-4 and BTV-20 infection would be distinguished from other BTV serotypes. The successful preparation of recombinant VP2 segments and mAbs provides valuable materials that can be used in serological diagnosis of BTV-4.  相似文献   

16.
Empty parvovirus B19 capsids were isolated from insect cells infected with a recombinant baculovirus expressing parvovirus B19 VP2 alone and also with a double-recombinant baculovirus expressing both VP1 and VP2. That VP2 alone can assemble to form capsids is a phenomenon not previously observed in parvoviruses. The stoichiometry of the capsids containing both VP1 and VP2 was similar to that previously observed in parvovirus B19-infected cells. The capsids were similar to native capsids in size and appearance, and their antigenicity was demonstrated by immunoprecipitation and enzyme-linked immunosorbent assay with B19-specific antibodies.  相似文献   

17.
A new porcine parvovirus (PPV), provisionally designated as PPV5, was identified in U.S. pigs. Cloning and sequencing from a circular or head-to-tail concatemeric array revealed that the PPV5 possesses the typical genomic organization of parvoviruses with two major predicted open reading frames (ORF1 and ORF2), and is most closely related to PPV4 with overall genomic identities of 64.1–67.3%. The amino acid identities between PPV5 and PPV4 were 84.6%–85.1% for ORF1 and 54.0%–54.3% for ORF2. Unlike PPV4, but similar to bovine parvovirus 2 (BPV2), PPV5 lacks the additional ORF3 and has a much longer ORF2. Moreover, the amino acid sequences of ORF1 and ORF2 of BPV2 showed higher homologies to PPV5 than to PPV4. The conserved motifs of the Ca2+ binding loop (YXGXG) and the catalytic center (HDXXY) of phospholipase A2 (PLA2) were identified in VP1 (ORF2) of PPV5, as well as in BPV2, but were not present in PPV4. Phylogenetic analyses revealed that PPV5, PPV4 and BPV2 form a separate clade different from the genera Parvovirus and Bocavirus. Further epidemiologic investigations of PPV4 and PPV5 in U.S. pigs of different ages indicated a slightly higher prevalence for PPV5 (6.6%; 32/483) compared to PPV4 (4.1%; 20/483), with detection of concurrent PPV4 and PPV5 in 15.6% (7/45) of lungs of infected pigs. Evidence for potential vertical transmission or association with reproductive failure was minimal for both PPV4 and PPV5. The high similarity to PPV4 and the lack of ORF3 may suggest PPV5 is an intermediate of PPV4 during the evolution of parvoviruses in pigs.  相似文献   

18.
【背景】鸭短喙侏儒综合征(beak atrophy and dwarfism syndrome, BADS)是由新型鸭细小病毒(novel duck Parvovirus, NDPV)感染导致雏鸭生长发育迟缓、上下喙萎缩的疾病。BADS的暴发给我国养鸭业造成了巨大的经济损失。【目的】利用大肠杆菌表达系统制备NDPV病毒样颗粒(virus-like particles, VLPs),为研制NDPV相关疫苗奠定基础。【方法】对NDPV VP2序列全长进行密码子优化、合成,连接至pColdTF表达载体,获得pColdTF-NDPV-VP2重组质粒,酶切、测序鉴定正确后将重组质粒转化至大肠杆菌BL21(DE3)中进行诱导表达,利用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(sodium dodecyl sulphate-polyacrylamide gel electrophoresis, SDS-PAGE)对蛋白表达进行可溶性分析;使用凝血酶(thrombin)切除trigger factor (TF)标签,利用镍柱(Ni-NTA)亲和层析方法纯化重组蛋白;利用Western blotting对纯化后的VP2蛋白进行反应原性分析;利用透射电镜、动态光散射观察重组蛋白形态以及能否形成VLPs。【结果】构建了pColdTF-NDPV-VP2重组质粒,在大肠杆菌中主要以可溶性形式表达,融合蛋白TF-VP2大小约为115 kDa,去除TF标签经镍柱纯化后得到67 kDa的VP2蛋白;Western blotting试验表明VP2蛋白能与NDPV鸭阳性血清发生特异性结合;通过透射电镜可以观察到形状规则、直径约为20−25 nm的病毒样颗粒。【结论】利用大肠杆菌表达系统制备了NDPV VLPs,为下一步研发BADS相关亚单位疫苗及生物相关制品提供了基础。  相似文献   

19.
为了获得既可预防猪细小病毒感染又能促进生长的嵌合病毒样颗粒疫苗,以PPV NJ-a株基因组DNA为模板扩增VP2基因片段,在VP2基因N端融合人工合成的4拷贝生长抑素基因,构建杆状病毒转移载体pFast-SS4-VP2。通过转化DH10Bac感受态细胞,pFast-SS4-VP2与穿梭载体Bacmid重组,获得重组Bacmid,命名为rBacmid-SS4-VP2。rBacmid-SS4-VP2转染Sf-9细胞,获得重组病毒rBac-SS4-VP2。SDS-PAGE与Western blotting鉴定可见约68 kDa的rSS4-VP2条带;rBac-SS4-VP2感染细胞IFA检测产生很强的特异性绿色荧光;感染细胞超薄切片电镜观察到大量特征性病毒样颗粒。将重组蛋白分别辅以铝胶、IMS和白油不同佐剂免疫小鼠,通过检测免疫小鼠VP2特异性ELISA抗体、PPV特异性中和抗体、生长抑素的抗体水平及生长激素水平来评价嵌合病毒样颗粒的免疫原性。结果表明,辅以铝胶与IMS佐剂重组蛋白组均产生了与PPV全毒组相似的ELISA抗体与中和抗体反应;重组蛋白免疫组均产生较好的针对生长抑素的抗体反应;免疫小鼠体内生长激素的水平明显升高;其中以铝胶佐剂组产生的各抗体水平最高,白油佐剂组各抗体水平最低。为以后生产安全、有效的颗粒化亚单位疫苗提供了一个新的设计思路,又为应用病毒样颗粒递呈外源肽,从而生产多联亚单位疫苗奠定了基础。  相似文献   

20.
Efficient vaccine delivery to mucosal tissues including mucosa-associated lymphoid tissues is essential for the development of mucosal vaccine. We previously reported that claudin-4 was highly expressed on the epithelium of nasopharynx-associated lymphoid tissue (NALT) and thus claudin-4-targeting using C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE) effectively delivered fused antigen to NALT and consequently induced antigen-specific immune responses. In this study, we applied the C-CPE-based vaccine delivery system to develop a nasal pneumococcal vaccine. We fused C-CPE with pneumococcal surface protein A (PspA), an important antigen for the induction of protective immunity against Streptococcus pneumoniae infection, (PspA-C-CPE). PspA-C-CPE binds to claudin-4 and thus efficiently attaches to NALT epithelium, including antigen-sampling M cells. Nasal immunization with PspA-C-CPE induced PspA-specific IgG in the serum and bronchoalveolar lavage fluid (BALF) as well as IgA in the nasal wash and BALF. These immune responses were sufficient to protect against pneumococcal infection. These results suggest that C-CPE is an efficient vaccine delivery system for the development of nasal vaccines against pneumococcal infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号