首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A physical map of the 5S and 18S–26S rRNA genes was determined using bi-color fluorescencein situ hybridization technique inA. victorialis var.platyphyllum. 5S rRNA genes were positioned in the intercalary regions of the short arms in homologous chromosomes 6. Two major loci of the 18S-26S rRNA genes were detected in the secondary constrictions flanking with a pair of satellite and terminal region of short arm in chromosome 4. And two additional minor loci were heterotype, representing one signal on the terminal region of the short arm in one homolog of chromsome 2, and other on one homolog of chromosome 6 with linked 5S rRNA loci. In addition chromomycin A3 (CMA,) fluorescent banding method was used to identify the relation between Nucleolus Organizer Region (NOR) sites and CMA, positive heterochromatin sites. In homologous chromosome 4 showing 18S–26S rDNA hybridization signals revealed also distinct CMA, positive band.  相似文献   

2.
Homologous in situ hybridization with tritiated 4S, 5S and 18/25S RNA from root tip meristems of Vicia faba has been used to study the pattern of distribution of DNA sequences coding for these RNAs in the diploid nuclei. 5S RNA hybridizes to two regions of the satellites of the pair of satellited chromosomes. The sites differ in the level of in situ hybridization implicating different degrees of redundancy. 18/25S RNA hybridization is concentrated to the secondary constriction of these satellite chromosomes. Both, 5S and 18/25S ribosomal RNA gene sites are located on the same pair of chromosomes, but obviously the sequences are not contiguous. An association of 5S RNA cistrons with heterochromatin is assumed. Additional RNA gene sites as well as 4S RNA gene sites are not detectable.  相似文献   

3.
The localization of the 28S, 18S and 5S rRNA genes in the mitotic chromosomes, and of the 5S rRNA genes in the lampbrush chromosomes of Triturus marmoratus has been studied by RNA/DNA in situ hybridization. The 28S and 18S genes are located in a subterminal position, and the 5S genes in an intermediate position, on the long arm of mitotic chromosome X. In situ hybridization on lampbrush chromosomes has shown that the 5S genes are located at or near a dense matrix loop landmark. The cytogenetic implications of these findings are briefly discussed.  相似文献   

4.
Summary Disomic strains ofSaccharomyces cerevisiae were studied by DNA-rRNA hybridization to examine the arrangement of rRNA cistrons on yeast chromosomes as well as to identify a disomic strain which was enriched for rRNA cistrons. Four of the five disomic strains tested showed a per cent hybridization lower than wild type. Two of these strains were found to be disomic for more than one chromosome. A slight increase in the per cent hybridization was observed with DNA isolated from one disomic strain. It was concluded that some chromosomes inSaccharomyces cerevisiae had few if any rRNA cistrons suggesting that the rRNA cistrons are non randomly distributed over the genome. From DNA-tRNA hybridization experiments, evidence for the presence of tyrosine tRNA genes on chromosomes VI was obtained.  相似文献   

5.
DNA preparations obtained from several tissues of Rhynchosciara americana and two related species, R. milleri and R. papaveroi, were hybridized to R. americana rRNA. The percentage of hybridization was found to be higher in tissues with low polyteny than in tissues with high polyteny, suggesting a relationship between the amount of rDNA and the tissue polyteny. This could be explained by under-replication of ribosomal cistrons in polytene cells, such as those from the salivary gland. Only slight tissue-dependent changes in the percentages of hybridization can be observed in heterologous hybridization using Xenopus laevis rRNA. The possibility that these experiments could not detect differences in the amount of ribosomal cistrons among tissues is discussed. The female:male ratio for the percentages of hybridization in the salivary gland of R. americana agrees with the results obtained by in situ hybridization experiments (16, 17) which have shown that the rRNA cistrons are distributed among chromosomes other than chromosome X.  相似文献   

6.
Ribosomal RNA cistron numbers in all the seven primary trisomics of diploid barley (Hordeum vulgare L.) were determined by DNA-rRNA filter hybridisation. Trisomies for the nucleolus organiser (NO) chromosomes 6 and 7 showed the highest levels of rDNA (DNA complementary to rRNA) indicating the localisation of rRNA cistrons on the NOs. Chromosomes 6 and 7 possessed 1,580 and 2,690 rRNA (18S + 5.8S + 26S) cistrons respectively. Trisomics for the other chromosomes (except for 3) also displayed levels of rDNA significantly higher (22–32%) than the diploid controls although the dosage of NOs was not altered. These non-specific increases were also present in trisomics for 6 and 7 (NOs) which showed further increases equivalent to their respective contributions. The nonspecific increases due to trisomy is indicative of rDNA compensation. Such increases did not persist in diploid sibs of the trisomics, demonstrating the nonheritable nature of the compensation.  相似文献   

7.
Cytological detection of cistrons coding for 18S and 28S ribosomal RNA (rRNA) within the genome of Mus musculus inbred strain SEC/1ReJ was accomplished using the technique of in situ hybridization. Metaphase chromosome spreads prepared from cultured fetal mouse cells were stained with quinacrine-HCl and photographed. After destaining, they were hybridized to Xenopus laevis tritiated 18S and 28S rRNA, specific activity 7.5 X 10(6) dpm/mug. Silver grains clustered over specific chromosomes were readily apparent after 4 months of autoradiographic exposure. The identity of the labelled chromosomes was established by comparing the autoradiographs to quinacrine photographs showing characteristic fluorescent banding of the chromosomes in each metaphase spread. The 18S and 28S rRNA was found to hybridize to chromosomes 12, 18, and 16. Statistical analysis of the grain distribution over 26 spreads revealed that the three chromosomes were significantly labelled. Grains over these chromosomes were concentrated in an area immediately distal to the centromere, a region which in chromosomes 12 and 18 in this particular strain is the site of a secondary constriction. The relative size of the secondary constrictions, long and thus prominent on chromosome 12, obvious but shorter on 18, and indistinguishable on chromosome 16, correlated with the average number of grains observed over the centromeric region of these chromosomes, 2.5, 1.0, and 0.78, respectively.  相似文献   

8.
Diagnostic markers for eight Thinopyrum distichum addition chromosomes in Triticum turgidum were established using C-banding, in situ hybridization, and restriction fragment length polymorphism analysis. The C-band karyotype conclusively identified individual Th. distichum chromosomes and distinguished them from chromosomes of T. turgidum. Also, TaqI and BamHI restriction fragments containing 5S and 18S-5.8S-26S rRNA sequences were identified as positive markers specific to Th. distichum chromosomes. Simultaneous fluorescence in situ hybridization showed both 5S and 18S-5.8S-26S ribosomal RNA genes to be located on chromosome IV. Thinopyrum distichum chromosome VII carried only a 18S-5.8S-26S rRNA locus and chromosome pair II carried only a 5S rRNA locus. The arrangement of these loci on Th. distichum chromosome IV was different from that on wheat chromosome pair 1B. Two other unidentified Th. distichum chromosome pairs also carried 5S rRNA loci. The homoeologous relationship between Th. distichum chromosomes IV and VII and chromosomes of other members of the Triticeae was discussed by comparing results obtained using these physical and molecular markers.  相似文献   

9.
The mitotic chromosomes of six specimens from Triturus vulgaris meridionalis have been examined by both in situ hybridization with 3H 18S+28S rRNA and AS-SAT staining method. The results of these two sets of experiments can be summarized as follows: 1) in each specimen the NORs and the additional ribosomal sites, which react positively to in situ hybridization with 3H 18S + 28S rRNA, are also stained by silver; 2) other chromosomal regions, which do not hybridize in situ with 3H 18S+28S rRNA, are on the other hand stained by the AS-SAT method. These latter Ag-positive sites show a species-specific pattern of chromosomal distribution.  相似文献   

10.
The chromosomal locations of the 45S (18S-5.8S-26S) and 5S ribosomal DNA in theBrachyscome lineariloba complex and two related species have been determined by the use of multicolor fluorescencein situ hybridization (McFISH). TheBrachyscome lineariloba complex includes five cytodemes with 2n=4, 8, 10, 12 and 16. Each of the 5S and 45S rDNA loci occurs at two sites on chromosomes in cytodemes with 2n=4. While in cytodemes with 2n=8, 10, 12 and 16, the number of 5S rDNA sites increases from four to eight paralleled to the genomic addition of diploid (4 chromosomes) or haploid (2 chromosomes) dosage. Of the 5S rDNA sites, only one pair is major, except for the cytodeme with 2n=10. The remaining 5S rDNA sites are minor and seem to have reduced the unit number of the 5S rDNA during the successive genomic additions. The 45S rDNA site is detected only at two nucleolar organizing regions in all cytodemes regardless of successive genomic addition. The loss or diminution of 45S rDNA sequences seem to have proceeded more rapidly than 5S rDNA sequences in theB. lineariloba complex.  相似文献   

11.
The genes coding for the two classes of ribosomal RNA molecules, 5S RNA and 18+28S RNA, have been localized in the Norway rat (Rattus norvegicus). The 18+28S RNA cistrons are found on three chromosomes, at secondary constrictions on the short arms of chromosomes 3 and 12 and at the telomere of the short arm of chromosome 11. These sites were confirmed using the silver staining technique for nucleolar organizer regions. Two sites were found for the 5S RNA genes; one is closely linked to the 18+28S gene site on chromosome 12. The second site is at or near the telomere of the long arm of chromosome 19.  相似文献   

12.
The most-important vetch species, Vicia narbonensis (narbon vetch, section Faba), Vicia villosa (hairy vetch, section Cracca) and Vicia sativa (common vetch, section Vicia) and their close relatives (often difficult to circumscribe into distinct taxa) constitute respectively, Narbonensis, Villosa and Sativa species complexes in the genus Vicia. The distribution of the 18S-5.8S-26S (18S-26S) and 5S ribosomal RNA (rRNA) gene families on the chromosomes of 19 (2n=2x=10,12,14) of the 24 species and subspecies belonging to the three species complexes, and Vicia bithynica (2n=12, section Faba) and Vicia hybrida (2n=12, section Hypechusa) was studied by fluorescence in situ hybridization (FISH) with pTa 71 (18S-26S rDNA) and pTa 794 (5S rDNA) DNA clones. Computer – aided chromosome analysis was performed on the basis of chromosome length, the arm-length ratio and the position of the hybridization signals. The positions of the four (2+2) signals of the two rRNA gene families were similar between each of the three, as well as two subspecies of V. narbonensis and Vicia johannis, respectively. Two major 18S-26S rDNA loci were found in the nucleolus organiser regions (NORs) of each of the species except V. hybrida, where it was present in two out of four SAT chromosomes. In addition to major NORs, two minor loci have been physically mapped at the centromeric regions of chromosomes of group 1 in Vicia amphicarpa, Vicia macrocarpa and V. sativa, and two NORs of group 5 in V. hybrida, and on the long arms of group 4 in V. bithynica. Two or four 5S rDNA loci, observed in the short arms of groups 2–4 and 5, and 18S-26S rDNA loci were located in different chromosomes of all the species within the Narbonensis and Villosa species complexes, and Vicia angustifolia of the Sativa species complex. In the remaining six species of the Sativa species complex, and V. bithynica and V. hybrida, the two or four 5S rDNA sites were present in chromosomes which harbor 18S-26S rRNA genes. The tandemly repeated 5S rDNA sites, located at the proximal part of the long arm of groups 3–5, were diagnostic for V. angustifolia, Vicia cordata, Vicia incisa, V. macrocarpa, Vicia nigra and V. sativa of the Sativa species complex. In V. amphicarpa of the same complex, the tandem repeats were located at the distal part of the long arms of group 3. Variability in the number, size and location of two ribosomal DNA probes could generally distinguish species within the Narbonensis and Sativa species complex, V. bithynica and V. hybrida. With respect to the four species of the Villosa species complex the karyotypes could not be identified individually on the basis of the distribution of two ribosomal gene families in three out of seven pairs of chromosomes. Received: 18 October 2000 / Accepted: 20 March 2001  相似文献   

13.
5S RNA was extracted from Zea mays tissue and iodinated in vitro with 125I to a high specific activity. Acrylamide gel electrophoresis of the 125I-5S RNA, 11/2 weeks after iodination demonstrated that most of the 5S RNA molecules were degraded to half-size or smaller. In situ hybridization with this iodinated RNA to pachytene microsporocyte chromosomes showed that the 5S RNA cistrons are located near the end of the long arm of chromosome 2. No obvious association of the 5S locus with the nucleolus was seen during pachytene or later stages.  相似文献   

14.
15.
 Three related and taxonomically close species of the genus Lilium (L. pyrenaicum Gouan, L. pomponium L. and L. carniolicum Bernh.), all of them with 2n=24 chromosomes, have been studied for chromosomal differentiation, using fluorochrome banding and fluorescence in situhybridization (FISH), and for genome size and GC percentage using flow cytometry. The total DNA content of L. pomponium (2C=70.26 pg) was about 5% higher than that of L. pyrenaicum (2C=67.74) and L. carniolicum (2C=67.37 pg), while GC percentage was higher in this last species (36.60%) than in L. pomponium (35.56%) and lower than in L. pyrenaicum (37.92%). Silver staining, fluorochrome banding with chromomycin A3 (CMA) and fluorescence in situ hybridization (FISH) clearly pointed out the number of nucleoli, the number and position of GC-rich bands and the number and location of rDNA sites thus permitting distinction of the three species at chromosomal level. Two families of ribosomal genes, 18S-5.8S-26S (18S) and 5S rRNA genes, were separated onto different pairs in chromosome complements of examined species. Chromosome regions containing both kinds of rRNA genes were also GC-rich regions. The results revealed a clear interspecific differentiation at the chromosomal level and permitted the discussion about relationships among the species. Received June 21, 2002; accepted October 4, 2002 Published online: Febraury 7, 2003  相似文献   

16.
Ribosomal genes have been localized on mitotic and lampbrush chromosomes of 20 specimens of Triturus vulgaris meridionalis by in situ hybridization with 3H 18S+28S rRNA. The results may be summarized as follows: 1) each individual shows positive in situ hybridization at the nucleolus organizing region (NOR) on chromosome XI; 2) in addition, many specimens exhibit a positive reaction in chromosomal sites other than the NOR (additional ribosomal sites); 3) the chromosomal distribution of the additional sites appears to be identical in different tissues from the same specimen and to follow a specific individual pattern; 4) the additional ribosomal sites are preferentially found at the telomeric, centromeric or C-band regions of the chromosomes involved.Abbreviations rRNA ribosomal RNA - NOR nucleolus organizer region - rDNA the DNA sequences coding for 18S+28S rRNA plus the intervening spacer sequences - SSC 0.15 M sodium chloride, 0.015 sodium citrate, pH 7  相似文献   

17.
Homologous tritiated 25S, 18S and 5.8S rRNAs were used separately for in situ hybridization to the polytene chromosomes of the embryo suspensor cells of Phaseolus coccineus. Hybridization occurred at the same chromosomal sites which were labeled in previous in situ hybridization experiments with 25+18S rRNAs in the same material (Avanzi et al., 1972), namely: nucleolus organizing system (satellite, nucleolar constriction and organizer) of chromosome pairs I (S1) and V (S2), proximal heterochromatic segment of the long arm of chromosome pair I, and terminal heterochromatic segment of chromosome pair II. Competition hybridization experiments confirmed for P. coccineus the high sequence homology between 25S and 18S rRNA already known for other plants.Homologous 125I-5S rRNA was found to hybridize to three sites in the polytene chromosomes of P. cocdneus: the proximal heterochromatic segment in the long arm of chromosome pair I (which also bears the sequences complementary to 25S, 18S and 5.8S RNAs), most of the proximal heterochromatic segment plus a small portion of adjoining euchromatin in the long arm of chromosome pair VI and the large intercalary heterochromatic segment in the same chromosome pair. Simultaneous labeling of the two 5S RNA sites in chromosome VI was quite rare (3%), the rule being labelling of one site to the exclusion of the other, with a labeling frequency of 43.7% and 53.3% for sites no. 1 and no. 2 respectively. These results are interpreted as being due to differential hybridizability of chromosomal sites such as described in other materials.  相似文献   

18.
The interspecific hybrids of Hordeum exhibit selective suppression of secondary constriction formation in the chromosome(s) contributed by one of the two parents. A comparison of the number of SAT (secondary constriction) chromosomes in the metaphase cells and the maximum number of nucleoli in interphase cells revealed that the chromosomes capable of organising nucleoli were not always reflected through secondary constriction formation. — The rDNA (DNA complementary to rRNA) amounts were estimated by DNA-rRNA filter hybridisation in diploid and polyploid species of Hordeum and their hybrids. While similar rDNA proportions were present in diploid and autotetraploid lines of H. bulbosum, there were up to threefold differences between H. vulgare and allohexaploids. Furthermore, differences were also apparent between species of same ploidy level. Ribosomal RNA (18S+5.8S+26S) cistron numbers in each of the five experimental hybrids exhibiting the selective suppression of secondary constriction formation revealed no selective loss of rDNA. — The presence of a higher number of nucleoli than the number of SAT chromosomes seen and the presence of expected number of rRNA cistrons suggest that the suppression of secondary constriction formation is not due to selective loss of rDNA.  相似文献   

19.
Members of a group of Australian Chironomus species in the pseudothummi complex show wide variation in number and location of nucleolar organizing regions (NORs). The structure of these regions has been examined by phase contrast microscopy and silver banding of salivary gland polytene chromosomes. Presence of nucleoli was also checked on other types of chromosomes in some species. The contribution of the silver banding technique to nucleolar studies in these chironomid chromosomes is discussed. Nucleoli often seem to emerge from groups of (up to 9) bands. Further studies are necessary to confirm the presence of rRNA cistrons in all of these bands. Banding differences, in particular absence of bands from homologous regions of some species which have smaller nucleoli or lack particular nucleoli, have been found. In the case of Ch. tepperi, however, little banding difference is apparent in the 16B region between the N(IV)+ and N(IV) chromosomes, although in situ hybridization (Eigenbrod 1978) shows a deletion of rRNA cistrons in the N(IV) stock. Differences in heterochromatin amount have also been observed at different NORs. A scheme for the evolution of nucleolar-producing regions in this Chironomus group in terms of these and other known chromosomal changes is presented and discussed.  相似文献   

20.
以紫薇(Lagerstroemia indica)、尾叶紫薇(L.caudata)、屋久岛紫薇(L.fauriei)和福建紫薇(L.limii)4种紫薇属植物为材料,利用染色体荧光原位杂交技术(FISH)获得了4种紫薇属植物的有丝分裂中期染色体FISH图及核型参数,分析了45SrDNA在紫薇属植物染色体上的数量和分布特点。结果表明,4种紫薇属植物染色体上均具有1对45SrDNA杂交位点,位于较长染色体短臂的近端部,紫薇、尾叶紫薇、屋久岛紫薇和福建紫薇的核型公式分别为2n=48=2M+24m+22sm、2n=48=30m+18sm、2n=48=2M+20m+26sm和2n=48=2M+32m+14sm,均为2A型。该研究首次获得了紫薇属植物45SrDNA荧光原位杂交核型,为紫薇属植物亲缘关系研究和细胞生物学研究提供了分子细胞学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号