首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previous studies have reported that insect cell lines lack the capacity to generate endogenously the nucleotide sugar, CMP-Neu5Ac, required for sialylation of glycoconjugates. In this study, the biosynthesis of this activated form of sialic acid completely from endogenous metabolites is demonstrated for the first time in insect cells by expressing the mammalian genes required for the multistep conversion of endogenous UDP-GlcNAc to CMP-Neu5Ac. The genes for UDP-GlcNAc-2-epimerase/ManNAc kinase (EK), sialic acid 9-phosphate synthase (SAS), and CMP-sialic acid synthetase (CSAS) were coexpressed in insect cells using baculovirus expression vectors, but the CMP-Neu5Ac and precursor Neu5Ac levels synthesized were found to be lower than those achieved with ManNAc supplementation due to feedback inhibition of the EK enzyme by CMP-Neu5Ac. When sialuria-like mutant EK genes, in which the site for feedback regulation has been mutated, were used, CMP-Neu5Ac was synthesized at levels more than 4 times higher than that achieved with the wild-type EK and 2.5 times higher than that achieved with ManNAc feeding. Addition of N-acetylglucosamine (GlcNAc), a precursor for UDP-GlcNAc, to the media increased the levels of CMP-Neu5Ac even more to a level 7.5 times higher than that achieved with ManNAc supplementation, creating a bottleneck in the conversion of Neu5Ac to CMP-Neu5Ac at higher levels of UDP-GlcNAc. The present study provides a useful biochemical strategy to synthesize and enhance the levels of the sialylation donor molecule, CMP-Neu5Ac, a critical limiting substrate for the generation of complex glycoproteins in insect cells and other cell culture systems.  相似文献   

2.
The CMP-sialic acid synthetase (CMP-Neu5Ac, synthetase) is responsible for the synthesis of CMP-Neu5Ac, which is the donor used by sialyltransferases to attach sialic acid to acceptor hydroxyl groups in various polysaccharides, glycolipids, and glycoproteins. Since CMP-Neu5Ac is unstable and relatively expensive, the CMP-Neu5Ac synthetase is valuable for the preparative enzymatic synthesis of sialylated oligosaccharides. We made a construct to over-express the Neisseria meningitidis CMP-Neu5Ac synthetase in Escherichia coli. The recombinant enzyme was expressed at very high level (over 70,000 U/L) in a soluble form. It was purified by a sequence of anion-exchange chromatography and gel filtration with an overall yield of 23% (specific activity 220 U/mg). The purified CMP-Neu5Ac synthetase was used in the gram-scale synthesis of CMP-Neu5Ac.  相似文献   

3.
Group B Streptococcus (GBS) is the foremost cause of neonatal sepsis and meningitis in the United States. A major virulence factor for GBS is its capsular polysaccharide, a high molecular weight polymer of branched oligosaccharide subunits. N -acetylneuraminic acid (Neu5Ac or sialic acid), at the end of the polysaccharide side chains, is critical to the virulence function of the capsular polysaccharide. Neu5Ac must be activated by CMP-Neu5Ac synthetase before it is incorporated into the polymer. We showed previously that a transposon mutant of a serotype III GBS strain which had no detectable capsular Neu5Ac was deficient in CMP-Neu5Ac-synthetase activity (Wessels et al ., 1992). In this paper, we report the identification and characterization of cpsF , a gene interrupted by transposon insertion in the previously described Neu5Ac-deficient mutant. The predicted amino acid sequence of the cpsF gene product shares 57% similarity and 37% identity with CMP-Neu5Ac synthetase encoded by the Escherichia coli K1 gene, neuA . The enzymatic function of the protein encoded by cpsF was established by cloning the gene in E. coli under the control of the T7 polymerase/promoter. Lysates of E. coli in which the cpsF gene product was expressed, catalysed the condensation of CTP with Neu5Ac to form CMP-Neu5Ac. In addition, when a CMP-Neu5Ac synthetase-deficient mutant of E. coli K1 was transformed with cpsF , K1 antigen expression was restored. We conclude that cpsF encodes CMP-Neu5Ac synthetase in type III GBS, and that the GBS enzyme can function in the capsule-synthesis of a heterologous bacterial species.  相似文献   

4.
The relative contribution of N-glycoloyl-beta-D-neuraminic acid (Neu5Gc) to total sialic acids expressed in mouse and rat liver glycoconjugates was found to be 95% and 11%, respectively. This considerable difference in sialic acid composition made these two tissues suitable models for a comparative investigation into the regulation of Neu5Gc biosynthesis and utilization. An examination of the CMP-glycoside specificity of Golgi-associated sialyltransferases using CMP-N-acetyl-beta-D-neuraminic acid (CMP-Neu5Ac) and CMP-Neu5Gc revealed no significant tissue-dependent differences. The Golgi membrane CMP-sialic acid transport system from rat liver did, however, exhibit a slightly higher internalisation rate for CMP-Neu5Ac, though no preferential affinity for this sugar nucleotide over CMP-Neu5Gc was observed. In experiments, where Golgi membrane preparations were incubated with an equimolar mixture of labelled CMP-Neu5Ac and CMP-Neu5Gc, no significant tissue-dependent differences in [14C]sialic acid composition were observed, either in the luminal soluble sialic acid fraction or in the precipitable sialic acid fraction, results which are consistent with the above observations. From this experiment, evidence was also obtained for the presence of a Golgi-lumen-associated CMP--sialic acid hydrolase which exhibited no apparent specificity for either CMP-Neu5Ac or CMP-Neu5Gc. The specific activity of the CMP-Neu5Ac hydroxylase, the enzyme responsible for the biosynthesis of Neu5Gc, was found to be 28-fold greater in high-speed supernatants of mouse liver than of rat liver. No hydroxylase activity was detected in the Golgi membrane preparations. It is therefore proposed that the cytoplasmic ratio of CMP-Neu5Ac and CMP-Neu5Gc produced by the hydroxylase, remains largely unmodified after CMP-glycoside uptake into the Golgi apparatus and transfer on to growing glycoconjugate glycan chains. The close relationship between the total sialic acid composition and the sialic acid pattern in the CMP-glycoside pools of the tissues lends considerable weight to this hypothesis.  相似文献   

5.
The addition of sialic acid residues to glycoproteins can affect important protein properties including biological activity and in vivo circulatory half-life. For sialylation to occur, the donor sugar nucleotide cytidine monophospho-sialic acid (CMP-SA) must be generated and enzymatically transferred to an acceptor oligosaccharide. However, examination of insect cells grown in serum-free medium revealed negligible native levels of the most common sialic acid nucleotide, CMP-N-acetylneuraminic acid (CMP-Neu5Ac). To increase substrate levels, the enzymes of the metabolic pathway for CMP-SA synthesis have been engineered into insect cells using the baculovirus expression system. In this study, a human CMP-sialic acid synthase cDNA was identified and found to encode a protein with 94% identity to the murine homologue. The human CMP-sialic acid synthase (Cmp-Sas) is ubiquitously expressed in human cells from multiple tissues. When expressed in insect cells using the baculovirus vector, the encoded protein is functional and localizes to the nucleus as in mammalian cells. In addition, co-expression of Cmp-Sas with the recently cloned sialic acid phosphate synthase with N-acetylmannosamine feeding yields intracellular CMP-Neu5Ac levels 30 times higher than those observed in unsupplemented CHO cells. The absence of any one of these three components abolishes CMP-Neu5Ac production in vivo. However, when N-acetylmannosamine feeding is omitted, the sugar nucleotide form of deaminated Neu5Ac, CMP-2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (CMP-KDN), is produced instead, indicating that alternative sialic acid glycoforms may eventually be possible in insect cells. The human CMP-SAS enzyme is also capable of CMP-N-glycolylneuraminic acid (CMP-Neu5Gc) synthesis when provided with the proper substrate. Engineering the CMP-SA metabolic pathway may be beneficial in various cell lines in which CMP-Neu5Ac production limits sialylation of glycoproteins or other glycans.  相似文献   

6.
The expression of O-acetylated sialic acids in human colonic mucins is developmentally regulated, and a reduction of O-acetylation has been found to be associated with the early stages of colorectal cancer. Despite this, however, little is known about the enzymatic process of sialic acid O-acetylation in human colonic mucosa. Recently, we have reported on a human colon sialate-7(9)-O-acetyltransferase capable of incorporating acetyl groups into sialic acids at the nucleotide-sugar level [Shen et al., Biol. Chem. 383 (2002), 307-317]. In this report, we show that the CMP-N-acetyl-neuraminic acid (CMP-Neu5Ac) and acetyl-CoA (AcCoA) transporters are critical components for the O-acetylation of CMP-Neu5Ac in Golgi lumen, with specific inhibition of either transporter leading to a reduction in the formation of CMP-5-N-acetyl-9-O-acetyl-neuraminic acid (CMP-Neu5,9Ac2). Moreover, the finding that 5-N-acetyl-9-O-acetyl-neuraminic acid (Neu5,9Ac2 could be transferred from neo-synthesised CMP-Neu5,9Ac2 to endogenous glycoproteins in the same Golgi vesicles, together with the observation that asialofetuin and asialo-human colon mucin are much better acceptors for Neu5,9Ac2 than asialo-bovine submandibular gland mucin, suggests that a sialyltransferase exists that preferentially utilises CMP-Neu5,9Ac2 as the donor substrate, transferring Neu5,9Ac2 to terminal Galbeta1,3(4)R- residues.  相似文献   

7.
N-Glycolylneuraminic acid (Neu5Gc) is an oncofetal antigen in humans and is developmentally regulated in rodents. We have explored the biology of N-acetylneuraminic acid hydroxylase, the enzyme responsible for conversion of the parent sialic acid, N-acetylneuraminic acid (Neu5Ac) to Neu5Gc. We show that the major sialic acid in all compartments of murine myeloma cell lines is Neu5Gc. Pulse-chase analysis in these cells with the sialic acid precursor [6-3H]N-acetylmannosamine demonstrates that most of the newly synthesized Neu5Gc appears initially in the cytosolic low-molecular weight pool bound to CMP. The percentage of Neu5Gc on membrane-bound sialic acids closely parallels that in the CMP-bound pool at various times of chase, whereas that in the free sialic acid pool is very low initially, and rises only later during the chase. This implies that conversion from Neu5Ac to Neu5Gc occurs primarily while Neu5Ac is in its sugar nucleotide form. In support of this, the hydroxylase enzyme from a variety of tissues and cells converted CMP-Neu5Ac to CMP-Neu5Gc, but showed no activity towards free or alpha-glycosidically bound Neu5Ac. Furthermore, the majority of the enzyme activity is found in the cytosol. Studies with isolated intact Golgi vesicles indicate that CMP-Neu5Gc can be transported and utilized for transfer of Neu5Gc to glycoconjugates. The general properties of the enzyme have also been investigated. The Km for CMP-Neu5Ac is in the range of 0.6-2.5 microM. No activity can be detected against the beta-methylglycoside of Neu5Ac. On the other hand, inhibition studies suggest that the enzyme recognizes both the 5'-phosphate group and the pyrimidine base of the substrate. Taken together, the data allow us to propose pathways for the biosynthesis and reutilization of Neu5Gc, with initial conversion from Neu5Ac occurring primarily at the level of the sugar nucleotide. Subsequent release and reutilization of Neu5Gc could then account for the higher steady-state level of Neu5Gc found in all of the sialic acid pools of the cell.  相似文献   

8.
In addition to sialic acid, bacteria produce several other nonulosonic acids, including legionaminic acid (Leg). This has exactly the same stereochemistry as sialic acid, with the added features of 9-deoxy and 7-amino groups. In order to explore the biological effects of replacing sialic acid residues (Neu5Ac) in glycoconjugates with Leg in its diacetylated form, diacetyllegionaminic acid (Leg5Ac7Ac), we tested CMP-Leg5Ac7Ac as a donor substrate with a selection of bacterial and mammalian sialyltransferases. The CMP-Leg5Ac7Ac was synthesized in vitro by means of cloned enzymes from the bacillosamine portion of the Campylobacter jejuni N-glycan pathway and from the Leg pathway of Legionella pneumophila. Using fluorescent derivatives of lactose, Galβ1,4GlcNAcβ and T-antigen (Galβ1,3GalNAcα) as acceptors, we tested eight different sialyltransferases and found that the Pasteurella multocida PM0188h and porcine ST3Gal1 sialyltransferases were significantly active with CMP-Leg5Ac7Ac, showing ~60% activity when compared with CMP-Neu5Ac. The Photobacterium α2,6 sialyltransferase was weakly active, with ~6% relative activity. The Leg5Ac7Ac-α-2,3-lactose product was then tested as a substrate with six sialidases of viral, bacterial and mammalian origin. All showed much lower activities than with the corresponding sialic acid substrate, with the influenza virus N1 being the most active and human NEU2 being the least active. These results show the feasibility of producing glycoconjugates with Leg5Ac7Ac residues as the terminal sugars, which should display novel biological properties.  相似文献   

9.
The capsular polysaccharide of Pasteurella haemolytica A2 consists of a linear polymer of N-acetylneuraminic acid (Neu5Ac) with (2–8) linkages. When the bacterium was grown at 37°C for 90 h in 250 ml shake flasks at 200 rpm in Brain heart infusion broth (BHIB), it accumulated, attaining a level of 60 g/ml. Release of this polymer was strictly regulated by the growth temperature, and above 40° no production was detected. The pathway for the biosynthesis of this sialic acid capsular polymer was also examined in P. haemolytica A2 and was seen to involve the sequential presence of three enzymatic activities: Neu5Ac lyase activity, which synthesizes Neu5Ac by condensation of N-acetyl-D-mannosamine and pyruvate with apparent Km values of 91 mM and 73 mM, respectively; a CMP-Neu5Ac synthetase, which catalyzes the production of CMP-Neu5Ac from Neu5Ac and CTP with apparent Km values of 2 mM and 0.5 mM, respectively, and finally a membrane-associated polysialyltransferase, which catalyzes the incorporation of sialic acid from CMP-Neu5Ac into polymeric products with an apparent CMP-Neu5Ac Km of 250 M.  相似文献   

10.
The sialic acid N-glycolylneuraminic acid (Neu5Gc) is synthesized by the action of CMP-Neu5Ac hydroxylase. The enzyme from various mammals has been purified, characterized and sequenced by cDNA cloning. Although functional sequence motifs can be postulated from comparisons with several enzymes, no global homologies to any other proteins have been found. The unusual characteristics of this hydroxylase raise questions about its evolution. As echinoderms are phylogenetically the oldest organisms possessing Neu5Gc, they represent a starting point for investigations on the origin of this enzyme. Despite many similarities with its mammalian counterpart, CMP-Neu5Ac hydroxylase from the starfish A. rubens exhibits fundamental differences, most notably its association with a membrane and a requirement for high ionic strength. In order to shed light on the structural basis for these differences, the primary structure of CMP-Neu5Ac hydroxylase from A. rubens has been determined by PCR and cDNA-cloning techniques, using initial sequence information from the mouse enzyme. The complete assembled cDNA contained an ORF coding for a protein of 653 amino acids with a molecular mass of 75 kDa. The deduced amino-acid sequence exhibited a high degree of homology with the mammalian enzyme, although the C-terminus was some 60 residues longer. This extension consists of a terminal hydrophobic region, which may mediate membrane-binding, and a preceding hydrophilic sequence which probably serves as a hinge or linker. The identity of the ORF was confirmed by expression of active CMP-Neu5Ac hydroxylase in E. coli at low temperatures.  相似文献   

11.
The sialic acid N-glycolylneuraminic acid (Neu5Gc) is formed by cytidine-5'-monophosphate-N-acetylneuraminic acid (CMP-Neu5Ac) hydroxylase (EC 1.14.13.45). The enzyme from mammals exhibits several unusual characteristics, raising questions about its evolution. Since echinoderms are the most primitive organisms possessing glycoconjugate-bound Neu5Gc, studies on the hydroxylase from members of this phylum may yield insights into the origin and development of the hydroxylase. Investigations on crude CMP-Neu5Ac hydroxylase in gonads from the starfish Asterias rubens revealed that it shares many properties with its mammalian counterpart. However, the echinoderm hydroxylase also exhibits fundamental differences, particularly its association with a membrane and a requirement for high ionic strength for optimal activity. Here, we describe the isolation of the CMP-Neu5Ac hydroxylase from A. rubens gonads using anion exchange chromatography and chromatography on immobilized cytochrome b(5). The enzyme was enriched 137-fold with a yield of 13%. The preparation exhibited a main polypeptide of 76 kDa, consistent with a cDNA sequence published earlier, and a minor protein of 64 kDa. A kinetic characterization showed that salt activation of this enzyme results from an increase in affinity for CMP-Neu5Ac. Evidence for the formation of a ternary complex of hydroxylase, CMP-Neu5Ac and cytochrome b(5) is also presented. The mechanistic and physiological significance of these results is discussed.  相似文献   

12.
A cytidine 5'-monophospho-N-acetylneuraminic acid (CMP-Neu5Ac) synthetase was found in a crude extract prepared from Photobacterium leiognathi JT-SHIZ-145, a marine bacterium that also produces a β-galactoside α2,6-sialyltransferase. The CMP-Neu5Ac synthetase was purified from the crude extract of the cells by a combination of anion-exchange and gel filtration column chromatography. The purified enzyme migrated as a single band (60 kDa) on sodium dodecylsulfate-polyacrylamide gel electrophoresis. The activity of the enzyme was maximal at 35 °C at pH 9.0, and the synthetase required Mg(2+) for activity. Although these properties are similar to those of other CMP-Neu5Ac synthetases isolated from bacteria, this synthetase produced not only CMP-Neu5Ac from cytidine triphosphate and Neu5Ac, but also CMP-N-glycolylneuraminic acid from cytidine triphosphate and N-glycolylneuraminic acid, unlike CMP-Neu5Ac synthetase purified from Escherichia coli.  相似文献   

13.
5-N-Acetylneuraminic acid (Neu5Ac) is the major sialic acid derivative found in animal cells. As a component of cell surface glycoconjugates, Neu5Ac is pivotal to numerous cellular recognition and communication processes including host-parasite interactions. A prerequisite for the synthesis of sialylated glycoconjugates is the activation of Neu5Ac to cytidine-monophosphate N-acetylneuraminic acid (CMP-Neu5Ac). The reaction is catalyzed by CMP-Neu5Ac-synthetase (syn), which, for unknown reasons, resides in the nucleus. Sequence analysis of the cloned murine CMP-Neu5Ac synthetase identified three clusters of basic amino acids (BC1-BC3) that might function as nuclear localization signals (NLS). In the present study chimeric protein and mutagenesis strategies were used to show that BC1 and BC2 are active NLS sequences when attached to the green fluorescent protein (enhanced GFP), but only BC2 is necessary and sufficient to mediate the nuclear import of CMP-Neu5Ac synthetase. Site-directed mutations identified the residues K(198)RXR to be essential for nuclear transport and Arg(202) to be necessary to complete the transport process. Cytoplasmic forms of CMP-Neu5Ac synthetase generated by single site mutations in BC2 demonstrated that (i) enzyme activity is independent of nuclear localization, and (ii) Arg(199) and Arg(202) are involved in both nuclear transport and synthetase activity. Comparison of all known and predicted CMP-sialic acid synthetases reveals Arg(202) and Gln(203) as highly conserved in evolution and critically important for optimal synthetase activity but not for nuclear localization. Combined, the data demonstrate that nuclear transport and enzyme activity are independent functions that share some common amino acid requirements in CMP-Neu5Ac synthetase.  相似文献   

14.
Escherichia coli Bos-12 synthesizes a heteropolymer of sialic acids with alternating alpha-2,9/alpha-2,8 glycosidic linkages (1). In this study, we have shown that the polysialyltransferase of the E. coli Bos-12 recognizes an alpha-2,8 glycosidic linkage of sialic acid at the nonreducing end of an exogenous acceptor of either the alpha-2,8 homopolymer of sialic acid or the alternating alpha-2,9/alpha-2,8 heteropolymer of sialic acid and catalyzes the transfer of Neu5Ac from CMP-Neu5Ac to this residue. When the exogenous acceptor is an alpha-2,8-linked oligomer of sialic acid, the main product synthesized is derived from the addition of a single residue of [14C]Neu5Ac to form either an alpha-2,8 glycosidic linkage or an alpha-2,9 glycosidic linkage at the nonreducing end, at an alpha-2, 8/alpha-2,9 ratio of approximately 2:1. When the acceptor is the alternating alpha-2,9/alpha-2,8 heteropolymer of sialic acid, chain elongation takes place four to five times more efficiently than the alpha-2,8-linked homopolymer of sialic acid as an acceptor. It was found that the alpha-2,9-linked homopolymer of sialic acid and the alpha-2,8/alpha-2,9-linked hetero-oligomer of sialic acid with alpha-2,9 at the nonreducing end not only failed to serve as an acceptor for the E. coli Bos-12 polysialyltransferase for the transfer of [14C]Neu5Ac, but they inhibited the de novo synthesis of polysialic acid catalyzed by this enzyme. The results obtained in this study favor the proposal that the biosynthesis of the alpha-2, 9/alpha-2,8 heteropolymer of sialic acid catalyzed by the E. coli Bos-12 polysialyltransferase involves a successive transfer of a preformed alpha-2,8-linked dimer of sialic acid at the nonreducing terminus of the acceptor to form an alpha-2,9 glycosidic linkage between the incoming dimer and the acceptor. The glycosidic linkage at the nonreducing end of the alternating alpha-2,9/alpha-2,8 heteropolymer of sialic acid produced by E. coli Bos-12 should be an alpha-2,8 glycosidic bond and not an alpha-2,9 glycosidic linkage.  相似文献   

15.
Rodent cells, widely used for the industrial production of recombinant human glycoproteins, possess CMP-N-acetylneuraminic acid hydroxylase (CMP-Neu5Ac hydroxylase; EC 1.14.13.45) which is the key enzyme in the formation of the sialic acid, N-glycolylneuraminic acid (Neu5Gc). This enzyme is not expressed in an active form in man and evidence suggests that the presence of Neu5Gc in recombinant therapeutic glycoproteins may elicit an immune response. The aim of this work was, therefore, to reduce CMP-Neu5Ac hydroxylase activity in a Chinese Hamster Ovary (CHO) cell line, and thus the Neu5Gc content of the resulting glycoconjugates, using a rational antisense RNA approach. For this purpose, the cDNA of the hamster hydroxylase was partially cloned and sequenced. Based on the sequence of the mouse and hamster cDNAs, optimal antisense RNA fragments were selected from preliminary in vitro translation tests. Compared to the parental cell line, the new strain (CHO-AsUH2), which was transfected with a 199-bp antisense fragment derived from the mouse CMP-Neu5Ac hydroxylase cDNA, showed an 80% reduction in hydroxylase activity. An analysis of the sialic acids present in the cells' own glycoconjugates revealed a decrease in the percentage of Neu5Gc residues from 4% in the parental cells to less than 1% in the CHO-AsUH2 cell line.  相似文献   

16.
The capsular polysaccharide is a critical virulence factor for group B streptococci associated with human infections, yet little is known about capsule biosynthesis. We detected CMP-Neu5Ac synthetase, the enzyme which activates N-acetylneuraminic acid (Neu5Ac, or sialic acid) for transfer to the nascent capsular polysaccharide, in multiple group B streptococcus serotypes, all of which elaborate capsules containing Neu5Ac. CMP-Neu5Ac synthetase isolated from a high-producing type Ib strain was purified 87-fold. The enzyme had apparent Km values of 7.6 for Neu5Ac and 1.4 for CTP and a pH optimum of 8.3 to 9.4, required magnesium, and was stimulated by dithiothreitol. This is the first characterization of an enzyme involved in group B streptococcus capsular polysaccharide biosynthesis.  相似文献   

17.
The finding that N-glycoloylneuraminic acid (Neu5Gc) in pig submandibular gland is synthesized by hydroxylation of the sugar nucleotide CMP-Neu5Ac [Shaw & Schauer (1988) Biol. Chem. Hoppe-Seyler 369, 477-486] prompted us to investigate further the biosynthesis of this sialic acid in mouse liver. Free [14C]Neu5Ac, CMP-[14C]Neu5Ac and [14C]Neu5Ac glycosidically bound by Gal alpha 2-3- and Gal alpha 2-6-GlcNAc beta 1-4 linkages to fetuin were employed as potential substrates in experiments with fractionated mouse liver homogenates. The only substrate to be hydroxylated was the CMP-Neu5Ac glycoside. The product of the reaction was identified by chemical and enzymic methods as CMP-Neu5Gc. All of the CMP-Neu5Ac hydroxylase activity was detected in the high-speed supernatant fraction. The hydroxylase required a reduced nicotinamide nucleotide [NAD(P)H] coenzyme and molecular oxygen for activity. Furthermore, the activity of this enzyme was enhanced by exogenously added Fe2+ or Fe3+ ions, all other metal salts tested having a negligible or inhibitory influence. This hydroxylase is therefore tentatively classified as a monooxygenase. The cofactor requirement and CMP-Neu5Ac substrate specificity are identical to those of the enzyme in high-speed supernatants of pig submandibular gland, suggesting that this is a common route of Neu5Gc biosynthesis. The relevance of these results to the regulation of Neu5Gc expression in sialoglycoconjugates is discussed.  相似文献   

18.
Sialic acids present on human colonic mucins are highly O-acetylated, however, little is known about the underlying enzymatic activity required for O-acetylation in this tissue. Here we report on the substrate specificity, subcellular localization and characterization of the sialate-7(9)-O-acetyltransferase in normal human colonic mucosa. Using CMP-Neu5Ac, the most efficient acceptor substrate of all those tested, the enzymatic activity was found to be optimal at 37 degrees C, with a pH optimum of 7.0. Activity was also found to be dependent on protein, CMP-Neu5Ac (Km: 59.2 microM) and AcCoA (Km: 6.1 microM) concentrations, as well as membrane integrity. The enzyme's activity could be inhibited by CoA with a Ki of 11.9 microM. In addition, enzymatic activity was found to be localized in the Golgi-enriched membrane fraction. The nature of the O-acetylated products formed were verified with the aid of chromatographic and enzymatic techniques. The main product was 9-O-acetylated Neu5Ac, with a significant amount of oligo-O-acetylated Neu5Ac also being detected. The utilization of CMP-Neu5Ac as the acceptor substrate was confirmed by the isolation and characterization of the putative product, CMP-Neu5,9Ac2, using ion-exchange chromatography. The ability of CMP-Neu5,9Ac2 to act as a sialic acid donor for sialyltransferases represents the conclusive demonstration for the formation of CMP-Neu5,9Ac2.  相似文献   

19.
Sialic acids participate in many important biological recognition events, yet eukaryotic sialic acid biosynthetic genes are not well characterized. In this study, we have identified a novel human gene based on homology to the Escherichia coli sialic acid synthase gene (neuB). The human gene is ubiquitously expressed and encodes a 40-kDa enzyme. The gene partially restores sialic acid synthase activity in a neuB-negative mutant of E. coli and results in N-acetylneuraminic acid (Neu5Ac) and 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (KDN) production in insect cells upon recombinant baculovirus infection. In vitro the human enzyme uses N-acetylmannosamine 6-phosphate and mannose 6-phosphate as substrates to generate phosphorylated forms of Neu5Ac and KDN, respectively, but exhibits much higher activity toward the Neu5Ac phosphate product.  相似文献   

20.
CMP-Neu5Gc has been shown to be transported into mouse liver Golgi vesicles by a specific carrier the characteristics of which were investigated in detail. In the system employed, CMP-Neu5Gc enters the Golgi vesicles within 2 min; transport was saturable with high concentrations of the sugar-nucleotide and was dependent on temperature. A kinetic analysis gave an apparent Km of 1.3 μM and a maximal transport velocity of 335 pmol/mg protein per min. Almost identical values were obtained with CMP-Neu5Ac, under the same incubation conditions. Furthermore, the uptake of CMP-Neu5Gc was inhibited by CMP-Neu5Ac, a substrate analogue. Conversely, the uptake of CMP-Neu5Ac was inhibited by CMP-Neu5Gc to the same extent, leading to the conclusion that the transport of CMP-Neu5Ac and CMP-Neu5Gc is mediated by the same carrier molecule. This transport system for CMP-Neu5Gc involves both CMP and CMP-Neu5Gc since intravesicular CMP induced the entry of external CMP-Neu5Gc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号