共查询到20条相似文献,搜索用时 15 毫秒
1.
K Hochstrasser G Albrecht O L Sch?nberger E Wachter 《Hoppe-Seyler's Zeitschrift für physiologische Chemie》1983,364(12):1689-1696
The acid-resistant 14-kDa inhibitor BI-14, released from bovine inter-alpha-trypsin inhibitor, consists of two tandem Kunitz-type domains, and is of a double-headed nature. The Arg-Thr bond connecting both domains was cleaved and the two inhibitory domains were separated. The N-terminal domain is an inhibitor of bovine chymotrypsin and elastases from porcine pancreases and human polymorphonuclear granulocytes, whereas the C-terminal domain interacts with trypsin, plasmin, and chymotrypsin. In the intact inhibitor BI-14 both domains interact independently with the proteinases. 相似文献
2.
K Hochstrasser E Wachter 《Hoppe-Seyler's Zeitschrift für physiologische Chemie》1983,364(12):1679-1687
An acid-labile proteinase inhibitor, quite similar to human inter-alpha-trypsin inhibitor, was isolated from bovine serum. An acid-resistant 30-kDa inhibitor, exhibiting properties similar to human HI-30, was also isolated. Upon limited proteolysis of both bovine inhibitors, active 14-kDa domains are released which are identical with respect to molecular mass and acid resistance. The amino-acid sequence determination of these fragments revealed a strong homology to the corresponding human inhibitor HI-14 which is characterized by two covalently linked Kunitz-type domains. The reactive-site residue is leucine in the N-terminal domain (in the human inhibitor methionine) and arginine in the C-terminal domain in both bovine and human inhibitor. 相似文献
3.
K Hochstrasser E Wachter G J Albrecht P Reisinger 《Biological chemistry Hoppe-Seyler》1985,366(5):473-478
The amino-acid sequences of the acid-resistant inhibitors released from horse and pig inter-alpha-trypsin inhibitor (ITI) by tryptic proteolysis were determined. They are composed of two covalently linked Kunitz-type domains. In both cases the reactive site of their C-terminal antitryptic domains is occupied by arginine as in the homologous human and bovine inhibitors. The reactive site of their N-terminal domain exhibits only a weak interaction with polymorphonuclear granulocytic elastase and is occupied by leucine as in the strong elastase inhibitor released from bovine ITI. The differences between inhibitory activities of the ITI-derived inhibitors from horse, pig, and cattle are discussed on the basis of sequence differences in position P'2. 相似文献
4.
E Wachter K Hochstrasser G Bretzel S Heindl 《Hoppe-Seyler's Zeitschrift für physiologische Chemie》1979,360(9):1297-1303
A short digestion with excess of trypsin releases an inhibitor with an apparent molecular weight of 14,000 from both the inter-alpha-trypsin inhibitor and the ITI-related acid-stable inhibitor. The amino acid sequence of this inhibitor was determined. The inhibitor is composed of two covalently linked homologous Kunitz-type domains. One domain has antitryptic activity, as reported. This paper characterizes the second, inactive domain as also of the Kunitz type. 相似文献
5.
E Wachter K Hochstrasser 《Hoppe-Seyler's Zeitschrift für physiologische Chemie》1979,360(9):1305-1311
The human inhibitor HI-14 consists of two Kunitz-type domains covalently connected. They are liberated from the human ITI by limited tryptic proteolysis. The inhibitor HI-14 is formed via a trypsin inhibitor complex. We have reported the amino acid sequences of the domain with antitryptic activity and the homologous domain without activity. Here we present the sequence of the domains as present in ITI. The domain lacking antitryptic activity is the N-terminal part of the inhibitor HI-14, whereas the domain with antitryptic activity represents the C-terminal part of HI-14 and probably the C-terminus of the ITI-molecule, too. 相似文献
6.
E Wachter K Hochstrasser 《Hoppe-Seyler's Zeitschrift für physiologische Chemie》1981,362(10):1351-1355
An acid-resistant trypsin inhibitor from human urine and serum is released in vivo by limited proteolysis from the high molecular acid-labile inter-alpha-trypsin inhibitor. The inhibitor shows an apparent molecular mass of 30 000 Da and is composed of two Kunitz-type domains. The domains are released in vitro by prolonged tryptic hydrolysis. The C-terminal domain is responsible for antitryptic activity. For the other domain no inhibitory activity towards proteinases, i.e. chymotrypsin, trypsin, pancreatic and leucocytic elastase has been demonstrated so far. The polypeptide chain comprising both domains consists of 122 residues and has a molecular mass of only 13 400 Da. In this work we have found that both, the N-terminal extension peptide with 21 residues and the "inactive" domain are linked O-glycosidically and N-glycosidically, respectively, with large carbohydrate moieties. The N-terminal amino acid sequence of the human urinary trypsin inhibitor was determined by solid-phase Edman degradation of a single peptide. The molecular mass calculated for the total polypeptide chain of 143 residues should be 15 340 Da; from the difference to the measured value (30 000 Da) it is concluded that the glycopeptide contains a considerable carbohydrate moiety. 相似文献
7.
K Hochstrasser E Wachter 《Hoppe-Seyler's Zeitschrift für physiologische Chemie》1979,360(9):1285-1296
The acid-stable trypsin inhibitor of human serum and urine is released in vivo by limited proteolysis from the high molecular weight, acid-labile inter-alpha-trypsin inhibitor. When complexed with trypsin, both this acid-stable, active derivative and the inter-alpha-trypsin inhibitor can be degraded in vitro by prolonged digestion with trypsin to a low molecular weight "minimal" inhibitor. This minimal trypsin inhibitor was sequenced and found to be homologous to the known Kunitz-type inhibitors (e.g. the basic trypsin-kallikrein inhibitor from bovine organs). This indicates that the antitryptic activity of the big inter-alpha-trypsin inhibitor is due to a Kunitz-type domain. 相似文献
8.
P Reisinger K Hochstrasser G J Albrecht K Lempart J P Salier 《Biological chemistry Hoppe-Seyler》1985,366(5):479-483
The N-terminal amino-acid sequence of human ITI has been found to be identical with that of the acid-stable human 30-kDa inhibitors (HI-30) from urine, serum, and those released from inter-alpha-trypsin inhibitor by trypsin or chymotrypsin. Serum HI-30 and HI-30 released by trypsin differ from the urinary inhibitor by an additional C-terminal arginine residue. Compared to these two inhibitors the inhibitor released by chymotryptic proteolysis is elongated C-terminally by an additional phenylalanine residue. These results strongly favour HI-30 as the N-terminus of the inter-alpha-trypsin inhibitor and its release from this inhibitor in vivo by cleavage of the Arg123-Phe124 peptide bond by trypsin-like proteinases. 相似文献
9.
10.
Elastase inhibition by the inter-alpha-trypsin inhibitor and derived inhibitors of man and cattle 总被引:2,自引:0,他引:2
G J Albrecht K Hochstrasser J P Salier 《Hoppe-Seyler's Zeitschrift für physiologische Chemie》1983,364(12):1703-1708
The inhibitory properties of HI-14 and BI-14, the active 14-kDa parts released from the corresponding human and bovine inter-alpha-trypsin inhibitors, are compared. The structurally homologous inhibitors composed of two tandem Kunitz-type domains differ in their inhibitory specificity, although the reactive site residue in position P1 is occupied by identical (arginine in the C-terminal domain II) or similar (methionine and leucine in the N-terminal domain I of HI-14 and BI-14, respectively) amino-acid residues. The N-terminal domain I of HI-14 is completely inactive against chymotrypsin and pancreatic elastase, whereas BI-14 is a strong inhibitor of these enzymes. Elastase from polymorphonuclear granulocytes interacts with both inhibitors but with different affinities. Compared with the bovine inhibitor, the human inhibitor shows a much lower affinity from this enzyme. Human ITI and its physiological 30-kDa derivative (HI-30) show the same inhibitory properties as HI-14. The differences between human and bovine inhibitors might be explained by a preceding oxidation of Met in vivo of the reactive site residue in position P1 and/or by the influence of the environmental parts connected with this antielastase reactive site region in human ITI or in the active domains thereof. 相似文献
11.
12.
T Dietl W Dobrinski K Hochstrasser 《Hoppe-Seyler's Zeitschrift für physiologische Chemie》1979,360(9):1313-1318
The acid-labile inter-alpha-trypsin inhibitor is cleaved enzymatically in vivo, liberating a smaller acid-stable inhibitor. The molar ratio of native inhibitor to this smaller inhibitor in plasma is significantly changed in some severe cases of inflammation and kidney injury. To clarify this observation on a molecular basis, the action of four different types of proteinases (trypsin, plasmin, kallikrein and granulocyte elastase) on the inter-alpha-trypsin inhibitor was studied. The initial rate of cleavage of the inter-alpha-trypsin inhibitor by a 1.3-fold molar excess of proteinase over inhibitor was found to be 4375 nM x min-1 with granulocyte elastase, 860 nM x min-1 with trypsin, 67 nM x min-1 with plasmin, and 0.3 nM X min-1 with kallikrein. Obviously, of the enzymes studied so far, the granulocyte elastase known to be released during severe inflammatory processes is by far the most potent proteinase in the transformation of the inter-alpha-trypsin inhibitor. The inter-alpha-trypsin inhibitor and its cleavage products inhibit bovine trypsin very strongly (Ki = 10(-9)--10(-11) M), porcine plasmin much less strongly, human plasmin very weakly and pancreatic kallikrein practically not at all. 相似文献
13.
14.
K Hochstrasser G Bretzel H Feuth W Hilla K Lempart 《Hoppe-Seyler's Zeitschrift für physiologische Chemie》1976,357(2):153-162
A small amount of antitryptic activity is detectable in the supernatant of deproteinized human serum. Preincubation of serum with trypsin causes an increase in acid-stable antitryptic activity. This rise in activity depends on the inter alpha-trypsin inhibitor concentration. The native inhibitor present in normal sera, and in higher concentrations in sera of patients with nephropathies, and the trypsin-liberated inhibitor show immunological cross reaction with antibodies to the serum inter-alpha-trypsin inhibitor. The two inhibitors differ in molecular weight and electrophoretic mobility. The physiological inhibitor (I-34), with a molecular weight of 34 000 and a high carbohydrate content, can be transformed by trypsin into an inhibitor (I-17) with a molecular weight of 17 000. This inhibitor is identical with the inhibitors liberated by trypsin from serum or from purified inter-alpha-trypsin inhibitor. The acid-stable inhibitor from urine is identical with the physiological serum inhibitor. Analogously, this inhibitor is transformed by trypsin into the inhibitor with a molecular weight of 17 000. We conclude that the inter-alpha-trypsin inhibitor is the precursor of both the physiological and the trypsin-liberated inhibitor. By a mechanism as yet unknown, but most likely a limited proteolysis, the secreted inhibitor is liberated from the high molecular weight precursor. In contrast to the monospecific trypsin-inhibiting precursor, the physiological and artificially liberated inhibitors are trypsin/chymotrypsin/plasmin inhibitors. 相似文献
15.
16.
Heterogeneity of rabbit muscle creatine kinase and limited proteolysis by proteinase K. 总被引:2,自引:4,他引:2 下载免费PDF全文
By using sodium dodecyl sulphage/polyacrylamide-gel electrophoresis it was shown that rabbit muscle creatine kinase, both in a homogenate and purified, appears to be composed of a mixture of two peptides (mol.wts. 42100 and 40300) differing in length by about 15 amino acids. It is found that low concentrations of proteinase K from the fungus Tritirachium album can cleave about 38 amino acids from each chain of creatine kinase, leaving two large fragments (mol.wts 37700 and 35500). Scission of the whole enzyme was found to be concomitant with complete loss of enzyme activity. MgADP in the presence of absence of creatine slowed the rate of proteolysis by about 50%, but the transition-state analogue complex creatine-NO3--MgADP appeared to protect completely. The time course for the proteolytic inactivation in the presence of this complex, but not in its absence, was biphasic. 相似文献
17.
The plasma clearance of neutrophil elastase, plasmin, and their complexes with human inter-alpha-trypsin inhibitor (I alpha I) was examined in mice, and the distribution of the proteinases among the plasma proteinase inhibitors was quantified in mixtures of purified inhibitors, in human or murine plasma, and in murine plasma following injection of purified proteins. The results demonstrate that I alpha I acts as a shuttle by transferring proteinases to other plasma proteinase inhibitors for clearance, and that I alpha I modulates the distribution of proteinase among inhibitors. The clearance of I alpha I-elastase involved transfer of proteinase to alpha 2-macroglobulin and alpha 1-proteinase inhibitor. The partition of elastase between these inhibitors was altered by I alpha I to favor formation of alpha 2-macroglobulin-elastase complexes. The clearance of I alpha I-plasmin involved transfer of plasmin to alpha 2-macroglobulin and alpha 2-plasmin inhibitor. Results of distribution studies suggest that plasmin binds to endothelium in vivo and reacts with I alpha I before transfer to alpha 2-macroglobulin and alpha 2-plasmin inhibitor. Evidence for this sequence of events includes observations that plasmin in complex with I alpha I cleared faster than free plasmin, that plasma obtained after injection of plasmin contained a complex identified as I alpha I-plasmin, and that a murine I alpha I-plasmin complex remained intact following injection into mice. Plasmin initially in complex with I alpha I more readily associated with alpha 2-plasmin inhibitor than did free plasmin. 相似文献
18.
L F Kress T Kurecki S K Chan M Laskowski 《The Journal of biological chemistry》1979,254(12):5317-5320
The inactive 50,000-dalton fragment of human plasma alpha1-proteinase inhibitor resulting from limited proteolysis of the inhibitor by Crotalus adamanteus proteinase II has been isolated and partially characterized. The amino acid composition of the inactivated inhibitor indicates the loss of a peptide fragment from the intact inhibitor. Both intact and inactivated inhibitor contain COOH-terminal lysine. However, the NH2 terminus of the intact inhibitor is Glx, whereas that of inactivated inhibitor is methionine. NH2-terminal analysis of the inactive inhibitor fragment revealed the following sequence: -Met-Phe-Leu-Glu-Ala-Ile-Pro-Met-Ser-Ile-Pro-Pro-Gln-Val-Lys-Phe-Asn. The data show that the venom proteinase has inactivated alpha1- proteinase inhibitor by cleavage of a single bond which differs from that reported for trypsin or papain. 相似文献
19.