共查询到20条相似文献,搜索用时 0 毫秒
1.
Knowles SC 《International journal for parasitology》2011,41(10):1041-1051
The question of how helminths may alter the course of concurrent malaria infection has attracted much interest in recent years. In particular, it has been suggested that by creating an anti-inflammatory immune environment, helminth co-infection may dampen both protective and immunopathological responses to malaria parasites, thus altering malaria infection dynamics and disease severity. Both synergistic and antagonistic interactions are reported in the literature, and the causes of variation among studies are not well understood. Here, meta-analysis of 42 mouse co-infection experiments was used to address how helminths influence malaria parasite replication and host mortality, and explore the factors explaining variation in findings. Most notably, this analysis revealed contrasting effects of helminth co-infection in lethal and resolving malaria models. Whilst co-infection exacerbated mortality and increased peak parasitaemia in ordinarily resolving malaria infections (Plasmodium chabaudi and Plasmodium yoelii), effects among lethal malaria infections (Plasmodium berghei) tended to be in the opposite direction with no change in parasitaemia. In the subset of experiments on cerebral malaria models (P. berghei ANKA strain in a susceptible host), helminth co-infection significantly delayed death. These findings are consistent with the hypothesis that depending on the existing balance of pro- and anti-inflammatory responses mounted against malaria parasites in a given host, immune responses elicited by helminth co-infection may either promote or inhibit malarial disease. However, despite such broad patterns, a prominent feature of this dataset was great heterogeneity in effects across studies. A key future challenge therefore lies in explaining the biological causes of this variation, including a more thorough exploration of non-immunological mechanisms of helminth-malaria interaction. 相似文献
2.
3.
Soares Magalhães RJ Biritwum NK Gyapong JO Brooker S Zhang Y Blair L Fenwick A Clements AC 《PLoS neglected tropical diseases》2011,5(6):e1200
Background
Morbidity due to Schistosoma haematobium and hookworm infections is marked in those with intense co-infections by these parasites. The development of a spatial predictive decision-support tool is crucial for targeting the delivery of integrated mass drug administration (MDA) to those most in need. We investigated the co-distribution of S. haematobium and hookworm infection, plus the spatial overlap of infection intensity of both parasites, in Ghana. The aim was to produce maps to assist the planning and evaluation of national parasitic disease control programs.Methodology/Principal Findings
A national cross-sectional school-based parasitological survey was conducted in Ghana in 2008, using standardized sampling and parasitological methods. Bayesian geostatistical models were built, including a multinomial regression model for S. haematobium and hookworm mono- and co-infections and zero-inflated Poisson regression models for S. haematobium and hookworm infection intensity as measured by egg counts in urine and stool respectively. The resulting infection intensity maps were overlaid to determine the extent of geographical overlap of S. haematobium and hookworm infection intensity. In Ghana, prevalence of S. haematobium mono-infection was 14.4%, hookworm mono-infection was 3.2%, and S. haematobium and hookworm co-infection was 0.7%. Distance to water bodies was negatively associated with S. haematobium and hookworm co-infections, hookworm mono-infections and S. haematobium infection intensity. Land surface temperature was positively associated with hookworm mono-infections and S. haematobium infection intensity. While high-risk (prevalence >10–20%) of co-infection was predicted in an area around Lake Volta, co-intensity was predicted to be highest in foci within that area.Conclusions/Significance
Our approach, based on the combination of co-infection and co-intensity maps allows the identification of communities at increased risk of severe morbidity and environmental contamination and provides a platform to evaluate progress of control efforts. 相似文献4.
A cross-sectional study of the prevalence, intensity and effects of soil-transmitted helminth and protozoan infections was undertaken among patients at the Buea Hospital Annex located in Buea sub-division of Cameroon. Stool samples from 356 subjects (174 males and 182 females) were collected and processed using standard concentration methods. Our results showed that 31.0% of subjects were infected with intestinal helminths and the prevalence was higher in females (32.4%) than in males (30.5%). A significantly higher prevalence was observed in rural (47.2%) than in urban areas (21.0%); significance < 0.1%. Prevalence was highest among those aged between 6 and 12 years (41.4%). The total prevalence of intestinal helminth infections were 19.3% for Ascaris lumbricoides, 14.0% for hookworm and 11.8% for Trichuris trichiura. The intensity of infection was unevenly distributed, with very heavy loads concentrated in a few individuals. Data also showed that 28.1% (100/356) of the subjects were infected with protozoans. Females showed a higher prevalence (28.6%; 52/182) than males (20.7%; 36/174). Also, there was a significantly higher prevalence in rural (34.0%; 49/144) than urban areas (18.4%; 39/212); significance < 0.1%. The age group 6-12 years again had a higher prevalence (37.1%; 26/70). The total prevalence of intestinal protozoans was: Entamoeba histolytica (24.4%), Entamoeba coli (11.2%) and Giardia lamblia (0.6%). These relatively heavy prevalences in patients may be reduced by appropriate medication and maintaining strict personal hygiene. Health education, clean water supply, good sewage management and a congenial environment will all help to minimize infection. 相似文献
5.
AR Bharti S Saravanan V Madhavan DM Smith J Sharma P Balakrishnan SL Letendre N Kumarasamy 《Malaria journal》2012,11(1):306
ABSTRACT: BACKGROUND: Malaria and HIV co-infection adversely impact the outcome of both diseases and previous studies have mostly focused on falciparum malaria. Plasmodium vivax contributes to almost half of the malaria cases in India, but the disease burden of HIV and P. vivax co-infection is unclear. METHODS: HIV-infected subjects (n=460) were randomly selected from the 4,611 individuals seen at a Voluntary Counseling and Testing Center in Chennai, India between Jan 2 to Dec 31 2008. Malaria testing was performed on stored plasma samples by both nested PCR using both genus-specific and species-specific primers and immunochromatography-based rapid diagnostic test for detecting antibodies against both Plasmodium falciparum and P. vivax. RESULTS: Recent malaria co-infection, defined by the presence of antibodies, was detected in 9.8% (45/460) participants. Plasmodium vivax accounted for majority of the infections (60%) followed by P. falciparum (27%) and mixed infections (13%). Individuals with HIV and malaria co-infection were more likely to be men (p=0.01). Between those with and without malaria, there was no difference in age (p=0.14), CD4+ T-cell counts (p=0.19) or proportion CD4+ T-cell below 200/mL (p=0.51). CONCLUSIONS: Retrospective testing of stored plasma samples for malaria antibodies can facilitate identification of populations with high rates of co-infection, and in this southern India HIVinfected cohort there was a considerable burden of malaria co-infection, predominantly due to P. vivax. However, the rate of P. falciparum infection was more than 6-fold higher among HIV-infected individuals than what would be expected in the general population in the region. Interestingly, individuals co-infected with malaria and HIV were not more likely to be immunosuppressed than individuals with HIV infection alone. 相似文献
6.
Hepatitis C virus (HCV) co-infection is common among HIV-infected individuals and can lead to increased morbidity and mortality in this population. HIV adversely impacts the natural history of HCV disease with higher rates of liver disease progression but the effect of HCV on the natural history of HIV is disputed. Additionally, presence of HCV may decrease tolerability of highly active antiretroviral regimens for HIV treatment due to a potential increase in hepatotoxicity. Currently there is limited information available regarding HCV therapy in the setting of HIV co-infection but the HCV virologic response to interferon regimens appears to be similar to those individuals with HCV infection alone. However, additional information is required to assess the efficacy and safety of HCV therapy including possible interaction of HCV and HIV anti-viral medications in these co-infected individuals. 相似文献
7.
8.
In sub-Saharan Africa, over 22 million people are estimated to be co-infected with both helminths and HIV-1. Several studies have suggested that de-worming individuals with HIV-1 may delay HIV-1 disease progression, and that the benefit of de-worming may vary by individual helminth species. We conducted a systematic review and meta-analysis of the published literature to determine the effect of treatment of individual helminth infections on markers of HIV-1 progression (CD4 count and HIV viral load). There was a trend towards an association between treatment for Schistosoma mansoni and a decrease in HIV viral load (Weighted mean difference (WMD)=-0·10; 95% Confidence interval (CI): -0·24, 0·03), although this association was not seen for Ascaris lumbricoides, hookworm or Trichuris trichiura. Treatment of A. lumbricoides, S. mansoni, hookworm or T. trichiura was not associated with a change in CD4 count. While pooled data from randomized trials suggested clinical benefit of de-worming for individual helminth species, these effects decreased when observational data were included in the pooled analysis. While further trials are needed to confirm the role of anthelmintic treatment in HIV-1 co-infected individuals, providing anthelmintics to individuals with HIV-1 may be a safe, inexpensive and practical intervention to slow progression of HIV-1. 相似文献
9.
The global epidemiology of HIV/AIDS and malaria overlap because a significant number of HIV-infected individuals live in regions with different levels of malaria transmission. Although the consequences of co-infection with HIV and malaria parasites are not fully understood, available evidence suggests that the infections act synergistically and together result in worse outcomes. The importance of understanding chemotherapeutic interactions during malaria and HIV co-infection is now being recognized. We know that some antimalarial drugs have weak antiretroviral effects; however, recent studies have also demonstrated that certain antiretroviral agents can inhibit malaria-parasite growth. Here, we discuss recent findings on the impact of HIV/AIDS and malaria co-infection and the possible roles of chemotherapy in improving the treatment of these diseases. 相似文献
10.
Booth M 《Trends in parasitology》2006,22(8):359-362
Conflicting opinions on the nature of malaria and helminth coinfections in humans have highlighted the need for a rational approach to study the effects of coinfections on morbidity. Here, it is argued that a variety of factors have led to this confusion but that many problems might be helped by more deliberate consideration of residential location and spatial aspects of exposure in parasitological surveys. 相似文献
11.
Bougouma EC Tiono AB Ouédraogo A Soulama I Diarra A Yaro JB Ouédaogo E Sanon S Konaté AT Nébié I Watson N Sanza M Dube TJ Sirima SB 《Malaria journal》2012,11(1):154
ABSTRACT: BACKGROUND: Genetic factors play a key role in determining resistance/susceptibility to infectious disease. Susceptibility of the human host to malaria infection has been reported to be influenced by genetic factors, which could be confounders if not taken into account in the assessment of the efficacy of interventions against malaria. This study aimed to assess the relationship between haemoglobin genotypes and malaria in children under five years in a site being characterized for future malaria vaccine trials. METHODS: The study population consisted of 452 children living in four rural villages. Hb genotype was determined at enrolment. Clinical malaria incidence was evaluated over a one-year period using combined active and passive surveillance. Prevalence of infection was evaluated via bi-annual cross-sectional surveys. At each follow-up visit, children received a brief clinical examination and thick and thin blood films were prepared for malaria diagnosis. A clinical malaria was defined as Plasmodium falciparum parasitaemia >2,500 parasites/ul and axillary temperature [greater than or equal to]37.5degreesC or reported fever over the previous 24 hours. RESULTS: Frequencies of Hb genotypes were 73.2% AA; 15.0% AC; 8.2% AS; 2.2% CC; 1.1% CS and 0.2% SS. Prevalence of infection at enrolment ranged from 61.9%-54.1% among AA, AC and AS children. After one year follow-up, clinical malaria incidence (95% CI) (episodes per person-year) was 1.9 (1.7-2.0) in AA, 1.6 (1.4-2.1) in AC, and 1.7 (1.4-2.0) in AS children. AC genotype was associated with lower incidence of clinical malaria relative to AA genotype among children aged 1-2 years [rate ratio (95% CI) 0.66 (0.42-1.05)] and 2-3 years [rate ratio (95% CI) 0.37 (0.18-0.75)]; an association of opposite direction was however apparent among children aged 3-4 years. AS genotype was associated with lower incidence of clinical malaria relative to AA genotype among children aged 2-3 years [rate ratio (95% CI) 0.63 (0.40-1.01)]. CONCLUSIONS: In this cohort of children, AC or AS genotype was associated with lower risk of clinical malaria relative to AA genotype only among children aged one to three years. It would be advisable for clinical studies of malaria in endemic regions to consider haemoglobin gene differences as a potentially important confounder, particularly among younger children. 相似文献
12.
E Abate M Belayneh A Gelaw J Idh A Getachew S Alemu E Diro N Fikre S Britton D Elias A Aseffa O Stendahl T Schön 《PloS one》2012,7(8):e42901
Background
Areas endemic of helminth infection, tuberculosis (TB) and HIV are to a large extent overlapping. The aim of this study was to assess the impact of asymptomatic helminth infection on the immunological response among TB patients with and without HIV, their house hold contacts and community controls.Methodology
Consecutive smear positive TB patients (n = 112), their household contacts (n = 71) and community controls (n = 112) were recruited in Gondar town, Ethiopia. Stool microscopy, HIV serology, serum IgE level, eosinophil and CD4 counts were performed and tuberculosis patients were followed up for 3 months after initiation of anti-TB treatment.Results
Helminth co-infection rate was 29% in TB patients and 21% in both community control and household contacts (p = 0.3) where Ascaris lumbricoides was the most prevalent parasite. In TB patients the seroprevalence of HIV was 47% (53/112). Eosinophilia and elevated IgE level were significantly associated with asymptomatic helminth infection. During TB treatment, the worm infection rate of HIV+/TB patients declined from 31% (10/32) at week 0 to 9% (3/32) at week 2 of TB treatment, whereas HIV−/TB patients showed no change from baseline to week 2, 29% (13/45) vs. 22.2% (10/45). This trend was stable at week 8 and 12 as well.Conclusion
One third of smear positive TB patients were infected with helminths. Eosinophilia and elevated IgE level correlated with asymptomatic worm infection, indicating an effect on host immunity. The rate of worm infection declined during TB treatment in HIV+/TB co-infected patients whereas no decline was seen in HIV−/TB group. 相似文献13.
ABSTRACT: BACKGROUND: Although chicken anemia virus (CAV) has been detected on all continents, little is known about this virus in sub-Saharan Africa. This study aimed to detect and characterize CAV for the first time in Central African Republic and in Cameroon. RESULTS: An overall flock seroprevalence of 36.7% was found in Central African Republic during the 2008--2010 period. Virus prevalences were 34.2% (2008), 14.3% (2009) and 10.4% (2010) in Central African Republic and 39% (2007) and 34.9% (2009) in Cameroon. CAV DNA was found in cloacal swabs of 76.9% of seropositive chickens, suggesting that these animals excreted the virus despite antibodies. On the basis of VP1 sequences, most of the strains in Central African Republic and Cameroon belonged to 9 distinct phylogenetic clusters at the nucleotide level and were not intermixed with strains from other continent. Several cases of mixed infections in flocks and individual chickens were identified. CONCLUSIONS: Our results suggest multiple introductions of CAV in each country that later spread and diverged locally. Mixed genotype infections together with the observation of CAV DNA in cloacal samples despite antibodies suggest a suboptimal protection by antibodies or virus persistence. 相似文献
14.
Greenwood B 《Malaria journal》2010,9(Z3):S2
Anti-malarial drugs can make a significant contribution to the control of malaria in endemic areas when used for prevention as well as for treatment. Chemoprophylaxis is effective in preventing deaths and morbidity from malaria, but it is difficult to sustain for prolonged periods, may interfere with the development of naturally acquired immunity and will facilitate the emergence and spread of drug resistant strains if applied to a whole community. However, chemoprophylaxis targeted to groups at high risk, such as pregnant women, or to periods of the year when the risk from malaria is greatest, can be an effective and cost effective malaria control tool and has fewer drawbacks. Intermittent preventive treatment, which involves administration of anti-malarials at fixed time points, usually when a subject is already in contact with the health services, for example attendance at an antenatal or vaccination clinic, is less demanding of resources than chemoprophylaxis and is now recommended for the prevention of malaria in pregnant women and infants resident in areas with medium or high levels of malaria transmission. Intermittent preventive treatment in older children, probably equivalent to targeted chemoprophylaxis, is also highly effective but requires the establishment of a specific delivery system. Recent studies have shown that community volunteers can effectively fill this role. Mass drug administration probably has little role to play in control of mortality and morbidity from malaria but may have an important role in the final stages of an elimination campaign. 相似文献
15.
Background
People living with HIV/AIDS (PLWHA) frequently have abnormal blood counts including anemia, leucopenia and thrombocytopenia. The role of infection with plasmodia on these hematological parameters in PLWHA is not well known. In this study we compared selected hematological parameters between malaria positive and negative PLWHA.Methods
We conducted a cross-sectional study of PLWHA attending the Douala Laquintinie hospital. After obtaining consent, demographic and clinical data were obtained via a standardized questionnaire. Blood samples collected for hematological assays were run using an automated full blood counter. Malaria parasitaemia was determined by blood smear microscopy.Results
A total of 238 adult PLWHA were enrolled, 48.3% of who were on antiretroviral therapy and 24.8% of whom had malaria parasitaemia. The respective mean (±SD) of hemoglobin level, RBC count, WBC count, platelet count, lymphocyte count and CD4+ T cell counts in malaria co-infected patients versus non-infected patients were: 10.8(±1.9) g/dl versus 11.4(±2.0)g/dl; 3,745,254(±793,353) cells/µl versus 3,888,966(±648,195) cells/µl; 4,403(±1,534) cells/µl versus 4,920(±1,922) cells/µl; 216,051(±93,884) cells/µl versus 226,792(±98,664) cells/µl; 1,846(±711) cells/µl versus 2,052(±845) cells/µl and 245(±195) cells/µl versus 301(±211) cells/µl. All these means were not statistically significantly different from each other.Conclusion
There was no significant difference in studied hematological parameters between malaria positive and negative PLWHA. These data suggest little or no impact of malaria infection. Hematological anomalies in PLWHA in this area need not be necessarily attributed to malaria. These need to be further investigated to identify and treat other potential causes. 相似文献16.
Co-infections alter the host immune response but how the systemic and local processes at the site of infection interact is still unclear. The majority of studies on co-infections concentrate on one of the infecting species, an immune function or group of cells and often focus on the initial phase of the infection. Here, we used a combination of experiments and mathematical modelling to investigate the network of immune responses against single and co-infections with the respiratory bacterium Bordetella bronchiseptica and the gastrointestinal helminth Trichostrongylus retortaeformis. Our goal was to identify representative mediators and functions that could capture the essence of the host immune response as a whole, and to assess how their relative contribution dynamically changed over time and between single and co-infected individuals. Network-based discrete dynamic models of single infections were built using current knowledge of bacterial and helminth immunology; the two single infection models were combined into a co-infection model that was then verified by our empirical findings. Simulations showed that a T helper cell mediated antibody and neutrophil response led to phagocytosis and clearance of B. bronchiseptica from the lungs. This was consistent in single and co-infection with no significant delay induced by the helminth. In contrast, T. retortaeformis intensity decreased faster when co-infected with the bacterium. Simulations suggested that the robust recruitment of neutrophils in the co-infection, added to the activation of IgG and eosinophil driven reduction of larvae, which also played an important role in single infection, contributed to this fast clearance. Perturbation analysis of the models, through the knockout of individual nodes (immune cells), identified the cells critical to parasite persistence and clearance both in single and co-infections. Our integrated approach captured the within-host immuno-dynamics of bacteria-helminth infection and identified key components that can be crucial for explaining individual variability between single and co-infections in natural populations. 相似文献
17.
K Marsh R W Snow 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》1997,352(1359):1385-1394
Severe morbidity due to Plasmodium falciparum is a major health problem in African children. The patterns of morbidity in endemic areas are modified by the immune response, and vary markedly with transmission intensity. Severe disease falls into three overlapping syndromes: coma, respiratory distress, and severe anaemia. Recently, it has become clear that metabolic acidosis plays a major role in the pathogenesis of severe disease and is particularly important in the overlap between the different clinical syndromes. We propose that the different manifestations of severe malarial morbidity arise from the interaction of a limited number of pathogenic processes: red cell destruction, toxin-mediated activation of cytokine cascades, and infected cell sequestration in tissue microvascular beds. The pattern of severe morbidity varies with age within any one endemic area, with severe anaemia predominating in the youngest children and coma having its highest incidence in older children. Between endemic areas there is a marked variation in mean age of children with severe malaria, and therefore in the importance of different clinical syndromes. The shift in mean age is due to a combination of increased challenge and more rapid development of immunity at higher levels of transmission. Recent comparative studies indicate that at higher levels of transmission the net effect of these shifts may be a paradoxical reduction in total severe malarial morbidity. 相似文献
18.
Mamoru Niikura Shigeru Kamiya Kiyoshi Kita 《International journal for parasitology》2010,40(1):101-108
Cerebral malaria is an infrequent but serious complication of Plasmodium falciparum infection in humans. Co-infection with different Plasmodium species is common in endemic areas and the existence of benign malaria parasites, such as Plasmodium vivax, during P. falciparum infection has been considered to reduce the risk of developing pathogenesis. However, it is still unknown how disease severity is reduced in the host during co-infection. In the present study, we investigated the influence of co-infection with non-lethal malaria parasites, Plasmodium berghei (Pb) XAT strain, on the outcome of Pb ANKA strain infection which causes experimental cerebral malaria (ECM) in mice. The co-infection with non-lethal Pb XAT suppressed ECM caused by Pb ANKA infection and prolonged survival of mice. The production of TNF-α and IFN-γ, which had been shown to be involved in development of ECM, was suppressed in co-infected mice early in infection. The suppression of ECM by co-infection with Pb XAT was abrogated in IL-10-deficient mice. IL-10 plays a crucial role in the suppression of ECM by co-infection with non-lethal malaria parasites, probably due to its suppressive effect on the induction of TNF-α and IFN-γ. Co-infection with Pb XAT and Pb ANKA is a useful model for understanding how ECM is suppressed. 相似文献
19.
Background and Objectives
The HIV-1 pandemic has disproportionately affected individuals in resource-constrained settings. It is important to determine if other prevalent infections affect the progression of HIV-1 in co-infected individuals in these settings. Some observational studies suggest that helminth infection may adversely affect HIV-1 progression. We sought to evaluate existing evidence on whether treatment of helminth infection impacts HIV-1 progression.Review Methods
This review was conducted using the HIV/AIDS Cochrane Review Group (CRG) search strategy and guidelines. Published and unpublished studies were obtained from The Cochrane Library (Issue 3, 2006), MEDLINE (November 2006), EMBASE (November 2006), CENTRAL (July 2006), and AIDSEARCH (August 2006). Databases listing conference abstracts and scanned reference lists were searched, and authors of included studies were contacted. Data regarding changes in CD4 count, HIV-1 RNA levels, clinical staging and/or mortality were extracted and compared between helminth-treated and helminth-untreated or helminth-uninfected individuals.Results
Of 6,384 abstracts identified, 15 met criteria for potential inclusion, of which 5 were eligible for inclusion. In the single randomized controlled trial (RCT) identified, HIV-1 and schistosomiasis co-infected individuals receiving treatment for schistosomiasis had a significantly lower change in plasma HIV-1 RNA over three months (−0.001 log10 copies/mL) compared to those receiving no treatment (+0.21 log10 copies/mL), (p = 0.03). Four observational studies met inclusion criteria, and all of these suggested a possible beneficial effect of helminth eradication on plasma HIV-1 RNA levels when compared to plasma HIV-1 RNA changes prior to helminth treatment or to helminth-uninfected or persistently helminth-infected individuals. The follow-up duration in these studies ranged from three to six months. The reported magnitude of effect on HIV-1 RNA was variable, ranging from 0.07–1.05 log10 copies/mL. None of the included studies showed a significant benefit of helminth treatment on CD4 decline, clinical staging, or mortality.Conclusion
There are insufficient data available to determine the potential benefit of helminth eradication in HIV-1 and helminth co-infected adults. Data from a single RCT and multiple observational studies suggest possible benefit in reducing plasma viral load. The impact of de-worming on markers of HIV-1 progression should be addressed in larger randomized studies evaluating species-specific effects and with a sufficient duration of follow-up to document potential differences on clinical outcomes and CD4 decline. 相似文献20.
Gopinath Balakrish Nair Thandavarayan Ramamurthy Dipika Sur Takashi Kurakawa Takuya Takahashi Koji Nomoto Yoshifumi Takeda 《Microbiology and immunology》2012,56(11):789-791
During a double‐blind, randomized, placebo‐controlled probiotic trial among 3758 children residing in an urban slum in Kolkata, India, Vibrio cholerae/mimicus was detected in fecal microbiota of healthy children. The importance of this finding in the local, regional and global transmission of cholera is discussed. 相似文献