首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We applied a phenotypic QST (PST) vs. FST approach to study spatial variation in selection among great snipe (Gallinago media) populations in two regions of northern Europe. Morphological divergence between regions was high despite low differentiation in selectively neutral genetic markers, whereas populations within regions showed very little neutral divergence and trait differentiation. QST > FST was robust against altering assumptions about the additive genetic proportions of variance components. The homogenizing effect of gene flow (or a short time available for neutral divergence) has apparently been effectively counterbalanced by differential natural selection, although one trait showed some evidence of being under uniform stabilizing selection. Neutral markers can hence be misleading for identifying evolutionary significant units, and adopting the PST-FST approach might therefore be valuable when common garden experiments is not an option. We discuss the statistical difficulties of documenting uniform selection as opposed to divergent selection, and the need for estimating measurement error. Instead of only comparing overall QST and FST values, we advocate the use of partial matrix permutation tests to analyse pairwise QST differences among populations, while statistically controlling for neutral differentiation.  相似文献   

2.
The comparison of the genetic differentiation of quantitative traits (QST) and molecular markers (FST) can inform on the strength and spatial heterogeneity of selection in natural populations, provided that markers behave neutrally. However, selection may influence the behaviour of markers in selfing species with strong linkage disequilibria among loci, therefore invalidating this test of detection of selection. We address this issue by monitoring the genetic differentiation of five microsatellite loci (FST) and nine quantitative traits (QST) in experimental metapopulations of the predominantly selfing species Arabidopsis thaliana, that evolved during eight generations. Metapopulations differed with respect to population size and selection heterogeneity. In large populations, the genetic differentiation of neutral microsatellites was much larger under heterogeneous selection than under uniform selection. Using simulations, we show that this influence of selection heterogeneity on FST can be attributable to initial linkage disequilibria among loci, creating stronger genetic differentiation of QTL than expected under a simple additive model with no initial linkage. We found no significant differences between FST and QST regardless of selection heterogeneity, despite a demonstrated effect of selection on QST values. Additional data are required to validate the role of mating system and linkage disequilibria in the joint evolution of neutral and selected genetic differentiation, but our results suggest that FST/QST comparisons can be conservative tests to detect selection in selfing species.  相似文献   

3.
The relative roles of natural selection and direct environmental induction, as well as of natural selection and genetic drift, in creating clinal latitudinal variation in quantitative traits have seldom been assessed in vertebrates. To address these issues, we compared molecular and quantitative genetic differentiation between six common frog (Rana temporaria) populations along an approximately 1600 km long latitudinal gradient across Scandinavia. The degree of population differentiation (QST approximately 0.81) in three heritable quantitative traits (age and size at metamorphosis, growth rate) exceeded that in eight (neutral) microsatellite loci (FST = 0.24). Isolation by distance was clear for both neutral markers and quantitative traits, but considerably stronger for one of the three quantitative traits than for neutral markers. QST estimates obtained using animals subjected to different rearing conditions (temperature and food treatments) revealed some environmental dependency in patterns of population divergence in quantitative traits, but in general, these effects were weak in comparison to overall patterns. Pairwise comparisons of FST and QST estimates across populations and treatments revealed that the degree of quantitative trait differentiation was not generally predictable from knowledge of that in molecular markers. In fact, both positive and negative correlations were observed depending on conditions where the quantitative genetic variability had been measured. All in all, the results suggest a very high degree of genetic subdivision both in neutral marker genes and genes coding quantitative traits across a relatively recently (< 9000 years) colonized environmental gradient. In particular, they give evidence for natural selection being the primary agent behind the observed latitudinal differentiation in quantitative traits.  相似文献   

4.
Medicago laciniata is restricted to south of the Mediterranean basin and it extends in Tunisia from the inferior semi-arid to Saharan stages, whereas M. truncatula is a widespread species in such areas. The genetic variability in four Tunisian sympatric populations of M. laciniata and M. truncatula was analysed using 19 quantitative traits and 20 microsatellites. We investigated the amplification transferability of 52 microsatellites developed in M. truncatula to M. laciniata. Results indicate that about 78.85% of used markers are valuable genetic markers for M. laciniata. M. laciniata displayed significantly lower quantitative differentiation among populations (QST=0.12) than did M. truncatula (QST=0.45). However, high molecular differentiations, with no significant difference, were observed in M. laciniata (FST=0.48) and M. truncatula (FST=0.47). Several quantitative traits exhibited significantly smaller QST than FST for M. laciniata, consistent with constraining selection. For M. truncatula, the majority of traits displayed no statistical difference in the level of QST and FST. Furthermore, these traits are significantly associated with eco-geographical factors, consistent with selection for local adaptation rather than genetic drift. In both species, there was no significant correlation between genetic variation at quantitative traits and molecular markers. The site-of-origin explains about 5.85% and 11.27% of total quantitative genetic variability among populations of M. laciniata and M. truncatula, respectively. Established correlations between quantitative traits and eco-geographical factors were generally more moderate for M. laciniata than for M. truncatula, suggesting that the two species exhibit different genetic bases of local adaptation to varying environmental conditions. Nevertheless, no consistent patterns of associations were found between gene diversity (He) and environmental factors in either species.  相似文献   

5.
6.
Ecological parameters vary in space, and the resulting heterogeneity of selective forces can drive adaptive population divergence. Clinal variation represents a classical model to study the interplay of gene flow and selection in the dynamics of this local adaptation process. Although geographic variation in phenotypic traits in discrete populations could be remainders of past adaptation, maintenance of adaptive clinal variation requires recurrent selection. Clinal variation in genetically determined traits is generally attributed to adaptation of different genotypes to local conditions along an environmental gradient, although it can as well arise from neutral processes. Here, we investigated whether selection accounts for the strong clinal variation observed in a highly heritable pheomelanin‐based color trait in the European barn owl by comparing spatial differentiation of color and of neutral genes among populations. Barn owl's coloration varies continuously from white in southwestern Europe to reddish‐brown in northeastern Europe. A very low differentiation at neutral genetic markers suggests that substantial gene flow occurs among populations. The persistence of pronounced color differentiation despite this strong gene flow is consistent with the hypothesis that selection is the primary force maintaining color variation among European populations. Therefore, the color cline is most likely the result of local adaptation.  相似文献   

7.
8.
Reduced levels of genetic variability and a prominent differentiation in both neutral marker genes and phenotypic traits are typical for many island populations as compared to their mainland conspecifics. However, whether genetic diversity in neutral marker genes reflects genetic variability in quantitative traits, and thus, their evolutionary potential, remains typically unclear. Moreover, the phenotypic differentiation on islands could be attributable to phenotypic plasticity, selection or drift; something which seldom has been tested. Using eight polymorphic microsatellite loci and quantitative genetic breeding experiments we conducted a detailed comparison on genetic variability and differentiation between Nordic islands (viz. Gotland, Öland and Læsø) and neighbouring mainland populations of moor frogs (Rana arvalis). As expected, the neutral variation was generally lower in island than in mainland populations. But as opposed to this, higher levels of additive genetic variation (V A) in body size and tibia length were found on the island of Gotland as compared to the mainland population. When comparing the differentiation seen in neutral marker genes (F ST) with the differentiation in genes coding quantitative traits (Q ST) two different evolutionary scenarios were found: while selection might explain a smaller size of moor frogs on Gotland, the differentiation seen in tibia length could be explained by genetic drift. These results highlight the limited utility of microsatellite loci alone in inferring the causes behind an observed phenotypic differentiation, or in predicting the amount of genetic variation in ecologically important quantitative traits.  相似文献   

9.
Divergent natural selection is considered an important force in plant evolution leading to phenotypic differentiation between populations exploiting different environments. Extending an earlier greenhouse study of population differentiation in the selfing annual plant Senecio vulgaris, we estimated the degree of population divergence in several quantitative traits related to growth and life history and compared these estimates with those based on presumably neutral molecular markers (amplified fragment length polymorphisms; AFLPs). This approach allowed us to disentangle the effects of divergent selection from that of other evolutionary forces (e.g. genetic drift). Five populations were examined from each of two habitat types (ruderal and agricultural habitats). We found a high proportion of total genetic variance to be among populations, both for AFLP markers (phiST = 0.49) and for quantitative traits (range of QST: 0.26-0.77). There was a strong correlation between molecular and quantitative genetic differentiation between pairs of populations (Mantel's r = 0.59). However, estimates of population differentiation in several quantitative traits exceeded the neutral expectation (estimated from AFLP data), suggesting that divergent selection contributed to phenotypic differentiation, especially between populations from ruderal and agricultural habitats. Estimates of within-population variation in AFLP markers and quantitative genetic were poorly correlated, indicating that molecular marker data may be of limited value to predict the evolutionary potential of populations of S. vulgaris.  相似文献   

10.
11.
Gene flow can inhibit evolutionary divergence by eroding genetic differences between populations. A current aim in speciation research is to identify conditions in which selection overcomes this process. We focused on a state of limited differentiation, asking whether selection enables divergence with gene flow in a set of Habronattus americanus jumping spider populations that exhibit three distinct male sexual display morphs. We found that each population is at high frequency or fixed for a single morph. These strong phenotypic differences contrast with low divergence at 210 AFLP markers, suggesting selection has driven or maintains morph divergence. Coinciding patterns of isolation by distance and ‘isolation by phenotype’ (i.e. increased genetic divergence among phenotypically contrasting populations) across the study area support several alternative demographic hypotheses for display divergence, each of which entails gene flow. Display‐associated structure appears broadly distributed across the genome and the markers producing this pattern do not stand out from background levels of differentiation. Overall, the results suggest selection can promote stark sexual display divergence in the face of gene flow among closely related populations.  相似文献   

12.
While it is well understood that the pace of evolution depends on the interplay between natural selection, random genetic drift, mutation, and gene flow, it is not always easy to disentangle the relative roles of these factors with data from natural populations. One popular approach to infer whether the observed degree of population differentiation has been influenced by local adaptation is the comparison of neutral marker gene differentiation (as reflected in FST) and quantitative trait divergence (as reflected in QST). However, this method may lead to compromised statistical power, because FST and QST are summary statistics which neglect information on specific pairs of populations, and because current multivariate tests of neutrality involve an averaging procedure over the traits. Further, most FST-QST comparisons actually replace QST by its expectation over the evolutionary process and are thus theoretically flawed. To overcome these caveats, we derived the statistical distribution of population means generated by random genetic drift and used the probability density of this distribution to test whether the observed pattern could be generated by drift alone. We show that our method can differentiate between genetic drift and selection as a cause of population differentiation even in cases with FST=QST and demonstrate with simulated data that it disentangles drift from selection more accurately than conventional FST-QST tests especially when data sets are small.  相似文献   

13.
Despite the enormous advances in genetics, links between phenotypes and genotypes have been made for only a few nonmodel organisms. However, such links can be essential to understand mechanisms of ecological speciation. The Costa Rican endemic Mangrove Warbler subspecies provides an excellent subject to study differentiation with gene flow, as it is distributed along a strong precipitation gradient on the Pacific coast with no strong geographic barriers to isolate populations. Mangrove Warbler populations could be subject to divergent selection driven by precipitation, which influences soil salinity levels, which in turn influences forest structure and food resources. We used single nucleotide polymorphisms (SNPs) and morphological traits to examine the balance between neutral genetic and phenotypic divergence to determine whether selection has acted on traits and genes with functions related to specific environmental variables. We present evidence showing: (a) associations between environmental variables and SNPs, identifying candidate genes related to bill morphology (BMP) and osmoregulation, (b) absence of population genetic structure in neutrally evolving markers, (c) divergence in bill size across the precipitation gradient, and (d) strong phenotypic differentiation (PST) which largely exceeds neutral genetic differentiation (FST) in bill size. Our results indicate an important role for salinity, forest structure, and resource availability in maintaining phenotypic divergence of Mangrove Warblers through natural selection. Our findings add to the growing body of literature identifying the processes involved in phenotypic differentiation along environmental gradients in the face of gene flow.  相似文献   

14.
Sequence polymorphisms in coding genes and variability in quantitative trait loci (QTL)-linked markers can be used to uncover the evolutionary mechanisms of traits involved in adaptive processes. We studied sequence variation in the EDA gene and allelic variation in 18 microsatellites - one of which (Gac4174) is linked with the EDA QTL - in low, partially and completely plated morphs from eight threespine stickleback European populations. The results agree with previous studies in that EDA polymorphism is closely related to plate number variation: EDA sequences grouped populations into low and completely plated morphs, whereas microsatellites failed to do so. Furthermore, partially plated fish were heterozygous with respect to the distinctive EDA alleles for completely and low plated morphs, indicating that completely plated morph alleles are not entirely dominant in controlling the expression of lateral plate number. An examination of population differentiation in plate number with quantitative genetic methods revealed that the degree of differentiation exceeded that expected from genetic drift alone (Q(ST) > F(ST)). Our results support the adaptive genetic differentiation of plate morphs and the view that distinctive EDA gene polymorphism occurs in similar sites across the distribution range of this species. Yet, allele frequency differentiation in the Gac4174 microsatellite locus, informative in experimental crosses for plate number variation, did not differ from that of neutral markers and, was therefore unable to detect the signature of natural selection responsible for population divergence.  相似文献   

15.
Mitochondrial and autosomal short tandem-repeat (STR) genetic distances among 28 Pacific Island and Asian populations are significantly correlated (r=.25, P<.01) but describe distinct patterns of relationships. Maternally inherited-mtDNA data suggest that Remote Oceanic Islanders originated in island Southeast Asia. In contrast, biparental STR data reveal substantial genetic affinities between Remote Oceanic Islanders and Near Oceanic populations from highland Papua New Guinea and Australia. The low correlation between maternal and biparental genetic markers from the same individuals may reflect differences in genome-effective population sizes or in sex-biased gene flow. To explore these possibilities, we have examined genetic diversity, gene flow, and correlations among genetic, linguistic, and geographic distances within four sets of populations representing potential geographic and cultural spheres of interaction. GST estimates (a measure of genetic differentiation inversely proportional to gene flow) from mtDNA sequences vary between 0.13 and 0.39 and are typically five times greater than GST estimates from STR loci (0.05-0.08). Significant correlations (r>.5, P<.05) between maternal genetic and linguistic distances are coincident with high mtDNA GST estimates (>0.38). Thus, genetic and linguistic distances may coevolve, and their correspondence may be preserved under conditions of genetic isolation. A significant correlation (r=.65, P<.01) between biparental genetic and geographic distances is coincident with a low STR GST estimate (0.05), indicating that isolation by distance is observed under conditions of high nuclear-gene flow. These results are consistent with an initial settlement of Remote Oceania from island Southeast Asia and with extensive postcolonization male-biased gene flow with Near Oceania.  相似文献   

16.
Detecting the action of selection in natural populations can be achieved using the QST-FST comparison that relies on the estimation of FST with neutral markers, and QST using quantitative traits potentially under selection. QST higher than FST suggests the action of directional selection and thus potential local adaptation. In this article, we apply the QST-FST comparison to four populations of the hermaphroditic freshwater snail Radix balthica located in a floodplain habitat. In contrast to most studies published so far, we did not detect evidence of directional selection for local optima for any of the traits we measured: QST calculated using three different methods was never higher than FST. A strong inbreeding depression was also detected, indicating that outcrossing is probably predominant over selfing in the studied populations. Our results suggest that in this floodplain habitat, local adaptation of R. balthica populations may be hindered by genetic drift, and possibly altered by uneven gene flow linked to flood frequency.  相似文献   

17.
Gene-expression variation in natural populations is widespread, and its phenotypic effects can be acted upon by natural selection. Only a few naturally segregating genetic differences associated with expression variation have been identified at the molecular level. We have identified a single nucleotide insertion in a vineyard isolate of Saccharomyces cerevisiae that has cascading effects through the gene-expression network. This allele is responsible for about 45% (103/230) of the genes that show differential gene expression among the homozygous diploid progeny produced by a vineyard isolate. Using isogenic laboratory strains, we confirm that this allele causes dramatic differences in gene-expression levels of key genes involved in amino acid biosynthesis. The mutation is a frameshift mutation in a mononucleotide run of eight consecutive T's in the coding region of the gene SSY1 , which encodes a key component of a plasma-membrane sensor of extracellular amino acids. The potentially high rate of replication slippage of this mononucleotide repeat, combined with its relatively mild effects on growth rate in heterozygous genotypes, is sufficient to account for the persistence of this phenotype at low frequencies in natural populations.  相似文献   

18.
19.
Divergent natural selection drives evolutionary diversification. It creates phenotypic diversity by favoring developmental plasticity within populations or genetic differentiation and local adaptation among populations. We investigated phenotypic and genetic divergence in the livebearing fish Poecilia mexicana along two abiotic environmental gradients. These fish typically inhabit nonsulfidic surface rivers, but also colonized sulfidic and cave habitats. We assessed phenotypic variation among a factorial combination of habitat types using geometric and traditional morphometrics, and genetic divergence using quantitative and molecular genetic analyses. Fish in caves (sulfidic or not) exhibited reduced eyes and slender bodies. Fish from sulfidic habitats (surface or cave) exhibited larger heads and longer gill filaments. Common-garden rearing suggested that these morphological differences are partly heritable. Population genetic analyses using microsatellites as well as cytochrome b gene sequences indicate high population differentiation over small spatial scale and very low rates of gene flow, especially among different habitat types. This suggests that divergent environmental conditions constitute barriers to gene flow. Strong molecular divergence over short distances as well as phenotypic and quantitative genetic divergence across habitats in directions classic to fish ecomorphology suggest that divergent selection is structuring phenotypic variation in this system.  相似文献   

20.
徐希宝  张靖  芮昌辉 《昆虫学报》2014,57(12):1381-1388
【目的】明确与谷胱甘肽S-转移酶(GST)相关联的棉铃虫 Helicoverpa armigera (Hübner)对甲氧虫酰肼的抗性分子机制, 更有效地开展棉铃虫抗药性的快速监测。【方法】用LC40甲氧虫酰肼处理棉铃虫3龄初幼虫, 测定处理前、后抗性种群GST的活性及5种GST基因的表达量变化, 并比较一种Delta基因GSTd1的编码区序列。【结果】经测序、比对, 抗甲氧虫酰肼种群(R-methoxyfenozide)和同源对照种群(S-methoxyfenozide)GSTd1基因编码区序列相同, 表明其编码的酶结构没有发生改变。甲氧虫酰肼处理前, R-methoxyfenozide种群的GST比活力显著高于S-methoxyfenozide种群; 而药剂处理后, 两种群的GST比活力均降低, 但R-methoxyfenozide种群的活性可以快速回升。药剂处理前, R-methoxyfenozide种群的GST基因表达量显著高于S-methoxyfenozide种群。药剂处理对不同抗性种群GST基因表达量的影响差异较大。除了GSTs1, S-methoxyfenozide种群GST基因表达量均降低, 其中GSTd2和GSTe2可以缓慢回升。GSTs1表达量在36 h内没有明显变化, 但在48 h显著升高。R-methoxyfenozide种群的GST基因表达量均先降低, 然后迅速恢复, 除GSTe2基因外, R-methoxyfenozide种群的基因初始表达量和药剂处理后的最终表达量均显著高于S-methoxyfenozide种群。【结论】棉铃虫对甲氧虫酰肼的抗性与GST比活力增强有关, 而GST比活力的增强主要源于多个GST基因的过量表达。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号