首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sinorhizobium meliloti is a symbiotic nitrogen-fixing bacterium that elicits nodule formation on roots of alfalfa plants. S. meliloti produces two exopolysaccharides (EPSs), termed EPS I and EPS II, that are both able to promote symbiosis. EPS I and EPS II are secreted in two major fractions that reflect differing degrees of subunit polymerization, designated high- and low-molecular-weight fractions. We reported previously that EPSs are crucial for autoaggregation and biofilm formation in S. meliloti reference strains and isogenic mutants. However, the previous observations were obtained by use of "domesticated" laboratory strains, with mutations resulting from successive passages under unnatural conditions, as has been documented for reference strain Rm1021. In the present study, we analyzed the autoaggregation and biofilm formation abilities of native S. meliloti strains isolated from root nodules of alfalfa plants grown in four regions of Argentina. 16S rRNA gene analysis of all the native isolates revealed a high degree of identity with reference S. meliloti strains. PCR analysis of the expR gene of all the isolates showed that, as in the case of reference strain Rm8530, this gene is not interrupted by an insertion sequence (IS) element. A positive correlation was found between autoaggregation and biofilm formation abilities in these rhizobia, indicating that both processes depend on the same physical adhesive forces. Extracellular complementation experiments using mutants of the native strains showed that autoaggregation was dependent on EPS II production. Our results indicate that a functional EPS II synthetic pathway and its proper regulation are essential for cell-cell interactions and surface attachment of S. meliloti.  相似文献   

2.
Sinorhizobium meliloti is a soil bacterium which can establish a nitrogen-fixing symbiosis with the legume Medicago sativa. Recent work has identified a pair of genes, sinR and sinI, which represent a potential quorum-sensing system and are responsible for the production of N-acyl homoserine lactones (AHLs) in two S. meliloti strains, Rm1021 and Rm41. In this work, we characterize the sinRI locus and show that these genes are responsible for the synthesis of several long-chain AHLs ranging from 12 to 18 carbons in length. Four of these, 3-oxotetradecanoyl HL, 3-oxohexadecenoyl HL, hexadecenoyl HL, and octadecanoyl HL, have novel structures. This is the first report of AHLs having acyl chains longer than 14 carbons. We show that a disruption in sinI eliminates these AHLs and that a sinR disruption results in only basal levels of the AHLs. Moreover, the same sinI and sinR mutations also lead to a decrease in the number of pink nodules during nodulation assays, as well as a slight delay in the appearance of pink nodules, indicating a role for quorum sensing in symbiosis. We also show that sinI and sinR mutants are still capable of producing several short-chain AHLs, one of which was identified as octanoyl HL. We believe that these short-chain AHLs are evidence of a second quorum-sensing system in Rm1021, which we refer to here as the mel system, for "S. meliloti."  相似文献   

3.
To contribute nitrogen for plant growth and establish an effective symbiosis with alfalfa, Sinorhizobium meliloti Rm1021 needs normal operation of the GlnD protein, a bifunctional uridylyltransferase/uridylyl-cleavage enzyme that measures cellular nitrogen status and initiates a nitrogen stress response (NSR). However, the only two known targets of GlnD modification in Rm1021, the PII proteins GlnB and GlnK, are not necessary for effectiveness. We introduced a Tyr→Phe variant of GlnB, which cannot be uridylylated, into a glnBglnK background to approximate the expected state in a glnD-sm2 mutant, and this strain was effective. These results suggested that unmodified PII does not inhibit effectiveness. We also generated a glnBglnK-glnD triple mutant and used this and other mutants to dissect the role of these proteins in regulating the free-living NSR and nitrogen metabolism in symbiosis. The glnD-sm2 mutation was dominant to the glnBglnK mutations in symbiosis but recessive in some free-living phenotypes. The data show that the GlnD protein has a role in free-living growth and in symbiotic nitrogen exchange that does not depend on the PII proteins, suggesting that S. meliloti GlnD can communicate with the cell by alternate mechanisms.  相似文献   

4.
Sinorhizobium meliloti is a free-living soil bacterium which is capable of establishing a symbiotic relationship with the alfalfa plant (Medicago sativa). This symbiosis involves a network of bacterium-host signaling, as well as the potential for bacterium-bacterium communication, such as quorum sensing. In this study, we characterized the production of N-acyl homoserine lactones (AHLs) by two commonly used S. meliloti strains, AK631 and Rm1021. We found that AK631 produces at least nine different AHLs, while Rm1021 produces only a subset of these molecules. To address the difference in AHL patterns between the strains, we developed a novel screening method to identify the genes affecting AHL synthesis. With this screening method, chromosomal groEL (groELc) was shown to be required for synthesis of the AHLs that are unique to AK631 but not for synthesis of the AHLs that are made by both AK631 and Rm1021. We then used the screening procedure to identify a mutation in a gene homologous to traM of Agrobacterium tumefaciens, which was able to suppress the phenotype of the groELc mutation. A traR homolog was identified immediately upstream of traM, and we propose that its gene product requires a functional groELc for activity and is also responsible for inducing the synthesis of the AHLs that are unique to AK631. We show that the traR/traM locus is part of a quorum-sensing system unique to AK631 and propose that this locus is involved in regulating conjugal plasmid transfer. We also present evidence for the existence of a second quorum-sensing system, sinR/sinI, which is present in both AK631 and Rm1021.  相似文献   

5.
6.
The purpose of this study was to identify strains of Sinorhizobium meliloti that formed either an effective or completely ineffective symbiosis with Medicago truncatula L. 'Jemalong A17' and, subsequently, to determine whether differences existed between their exoH genes. Sinorhizobium meliloti TII7 and A5 formed an effective and ineffective symbiosis with M. truncatula 'Jemalong A17', respectively. Using a multilocus sequence typing method, both strains were shown to have chromosomes identical with S. meliloti Rm1021 and RCR2011. The 2260-bp segments of DNA stretching from the 3' end of exoI through open reading frames of hypothetical proteins SM_b20952 and SM_b20953 through exoH into the 5' end of exoK in strains TII7 and Rm1021 differed by a single nucleotide at base 127 of the hypothetical protein SM_b20953. However, the derived amino acid sequences of the exoH genes of effective TII7, ineffective A5, and strain Rm1021 were shown to be identical with each other. Therefore, it would seem unlikely that the gene product of exoH is directly involved with the low efficiency of a symbiosis of strain Rm1021 with M. truncatula 'Jemalong A17'. Complementation or complete genome sequence analyses involving strains TII7 and A5 might be useful approaches to investigate the molecular bases for the differential symbiotic response with M. truncatula 'Jemalong A17'.  相似文献   

7.
8.
The rkp-3 region is indispensable for capsular polysaccharide (K antigen) synthesis in Sinorhizobium meliloti Rm41. Strain Rm41 produces a K antigen of strain-specific structure, designated as the KR5 antigen. The data in this report show that the rkp-3 gene region comprises 10 open reading frames involved in bacterial polysaccharide synthesis and export. The predicted amino acid sequences for the rkpL-Q gene products are homologous to enzymes involved in the production of specific sugar moieties, while the putative products of the rkpRST genes show a high degree of similarity to proteins required for transporting polysaccharides to the cell surface. Southern analysis experiments using gene-specific probes suggest that genes involved in the synthesis of the precursor sugars are unique in strain Rm41, whereas sequences coding for export proteins are widely distributed among Sinorhizobium species. Mutations in the rkpL-Q genes result in a modified K antigen pattern and impaired symbiotic capabilities. On this basis, we suggest that these genes are required for the production of the KR5 antigen that is necessary for S. meliloti Rm41 exoB (AK631)-alfalfa (Medicago sativa) symbiosis.  相似文献   

9.
We have physically and genetically characterized 20 symbiotic and 20 auxotrophic mutants of Rhizobium meliloti, the nitrogen-fixing symbiont of alfalfa (Medicago sativa), isolated by transposon Tn5 mutagenesis. A "suicide plasmid" mutagenesis procedure was used to generate TN-5-induced mutants, and both auxotrophic and symbiotic mutants were found at a frequency of 0.3% among strains containing random TN5 insertions. Two classes of symbiotic mutants were isolated: 4 of the 20 formed no nodules at all (Nod-), and 16 formed nodules which failed to fix nitrogen (Fix-). We used a combination of physical and genetic criteria to determine that in most cases the auxotrophic and symbiotic phenotypes could be correlated with the insertion of a single Tn5 elements. Once the Tn5 element was inserted into the R. meliloti genome, the frequency of its transposition to a new site was approximately 10-8 and the frequency of precise excision was less than 10-9. In approximately 25% of the mutant strains, phage Mu DNA sequences, which originated from the suicide plasmid used to generate the Tn5 transpositions, were also found in the R. meliloti genome contiguous with Tn5. These later strains exhibited anomalous conjugation properties, and therefore we could not correlate the symbiotic phenotype with a Tn5 insertion. In general, we found that both physical and genetic tests were required to fully characterize transposon-induced mutations.  相似文献   

10.
A Tn5 mutant strain of Sinorhizobium meliloti with an insertion in tpiA (systematic identifier SMc01023), a putative triose phosphate isomerase (TPI)-encoding gene, was isolated. The tpiA mutant grew more slowly than the wild type on rhamnose and did not grow with glycerol as a sole carbon source. The genome of S. meliloti wild-type Rm1021 contains a second predicted TPI-encoding gene, tpiB (SMc01614). We have constructed mutations and confirmed that both genes encode functional TPI enzymes. tpiA appears to be constitutively expressed and provides the primary TPI activity for central metabolism. tpiB has been shown to be required for growth with erythritol. TpiB activity is induced by growth with erythritol; however, basal levels of TpiB activity present in tpiA mutants allow for growth with gluconeogenic carbon sources. Although tpiA mutants can be complemented by tpiB, tpiA cannot substitute for mutations in tpiB with respect to erythritol catabolism. Mutations in tpiA or tpiB alone do not cause symbiotic defects; however, mutations in both tpiA and tpiB caused reduced symbiotic nitrogen fixation.  相似文献   

11.
Six heat shock tolerant mutants of Rhizobium meliloti Rmd201 were isolated through transposon Tn5 mutagenesis. The symbiotic assays of these mutants with alfalfa plants, showed four of these mutants to be affected in nitrogenase effectivity also. These four mutants could be classified into two separate complementation groups hssA and hssC through R-prime mediated merodiploid constructions. The hssC mutant Rmd1040 also showed poor interaction with phages indicating surface alterations. The results indicated possible involvement of these loci in symbiosis as well as heat shock response.  相似文献   

12.
J W Reed  M Capage    G C Walker 《Journal of bacteriology》1991,173(12):3776-3788
R. meliloti Rm1021 normally produces an acidic Calcofluor-binding exopolysaccharide, called succinoglycan or EPS I, which is required for successful nodulation of alfalfa by this strain. At least 13 loci affecting production of EPS I were previously mapped to a cluster on the second of two symbiotic megaplasmids in Rm1021, pRmeSU47b. A putative regulatory region was originally defined by the exoG and exoJ mutations. exoG and exoJ mutants produced less exopolysaccharide than wild-type strains and induced nitrogen-fixing nodules on alfalfa with reduced efficiency compared with the wild type. These mutants appeared to produce only a low-molecular-weight form of EPS I. Mutations called exoX cause an increase in exopolysaccharide production and map in the same region as the exoG and exoJ mutations. The DNA sequence of this region reveals that it contains two open reading frames, called exoX and exoY, which have homologs in other Rhizobium species. Interestingly, the exoG insertion mutations fall in an intergenic region and may affect the expression of exoX or exoY. The exoJ mutation falls in the 3' portion of the exoX open reading frame and is probably an allele of exoX that results in altered function. exoG and exoJ mutations limit EPS I production in the presence of exoR95 or exoS96 mutations, which cause overproduction of EPS I. Gene regulation studies suggest that ExoX and ExoY constitute a system that modulates exopolysaccharide synthesis at a posttranslational level. The deduced sequence of ExoY is homologous to a protein required for an early step in xanthan gum biosynthesis, further suggesting that the modulatory system may affect the exopolysaccharide biosynthetic apparatus.  相似文献   

13.
Sinorhizobium meliloti enters an endosymbiosis with alfalfa plants through the formation of nitrogen-fixing nodules. In order to identify S. meliloti genes required for symbiosis and competitiveness, a method of signature-tagged mutagenesis was used. Two sets, each consisting of 378 signature-tagged mutants with a known transposon insertion site, were used in an experiment in planta. As a result, 67 mutants showing attenuated symbiotic phenotypes were identified, including most of the exo, fix, and nif mutants in the sets. For 38 mutants in genes previously not described to be involved in competitiveness or symbiosis in S. meliloti, attenuated competitiveness phenotypes were tested individually. A large part of these phenotypes was confirmed. Moreover, additional symbiotic defects were observed for mutants in several novel genes such as infection deficiency phenotypes (ilvI and ilvD2 mutants) or delayed nodulation (pyrE, metA, thiC, thiO, and thiD mutants).  相似文献   

14.
The photosynthetic bradyrhizobia are able to use a Nod-factor independent process to induce nitrogen-fixing nodules on some semi-aquatic Aeschynomene species. These bacteria display a unique LPS O-antigen composed of a new sugar, the bradyrhizose that is regarded as a key symbiotic factor due to its non-immunogenic character. In this study, to check this hypothesis, we isolated mutants affected in the O-antigen synthesis by screening a transposon mutant library of the ORS285 strain for clones altered in colony morphology. Over the 10,000 mutants screened, five were selected and found to be mutated in two genes, rfaL, encoding for a putative O-antigen ligase and gdh encoding for a putative dTDP-glucose 4,6-dehydratase. Biochemical analysis confirmed that the LPS of these mutants completely lack the O-antigen region. However, no effect of the mutations could be detected on the symbiotic properties of the mutants indicating that the O-antigen region of photosynthetic Bradyrhizobium strains is not required for the establishment of symbiosis with Aeschynomene.  相似文献   

15.
16.
Genetic experiments have indicated that succinoglycan (EPS I), the acidic Calcofluor-binding exopolysaccharide, of the nitrogen-fixing bacterium Rhizobium meliloti strain Rm1021 is required for nodule invasion and possibly for later events in nodule development on alfalfa and other hosts. Fourteen exo loci on the second megaplasmid have been identified that are required for, or affect, the synthesis of EPS I. Mutations in certain of these loci completely abolish the production of EPS I and result in mutants that form empty Fix- nodules. We have identified two loci, exoR and exoS, that are involved in the regulation of EPS I synthesis in the free-living state. Certain exo mutations which completely abolish EPS I production are lethal in an exoR95 or exoS96 background. Histochemical analyses of the expression of exo genes during nodulation using exo::TnphoA fusions have indicated that the exo genes are expressed most strongly in the invasion zone. In addition, we have discovered that R. meliloti has a latent capacity to synthesize a second exopolysaccharide (EPS II) that can substitute for the role(s) of EPS I in nodulation of alfalfa but not of other hosts. Possible roles for exopolysaccharides in symbiosis are discussed.  相似文献   

17.
18.
S Long  S McCune    G C Walker 《Journal of bacteriology》1988,170(9):4257-4265
We have developed a system for using TnphoA (TnphoA is Tn5 IS50L::phoA), which generates fusions to alkaline phosphatase (C. Manoil and J. Beckwith, Proc. Natl. Acad. Sci. USA 82:8129-8133, 1985), in Rhizobium meliloti. Active fusions expressing alkaline phosphatase can arise only when this transposon inserts in genes encoding secreted or membrane-spanning proteins. By confining our screening to 1,250 TnphoA-generated mutants of R. meliloti that expressed alkaline phosphatase, we efficiently identified 25 symbiotically defective mutants, all of which formed ineffective (Fix-) nodules on alfalfa. Thirteen of the mutants were unable to synthesize an acidic exopolysaccharide (exo::TnphoA) that is required for nodule invasion. Twelve of the mutations created blocked at later stages of nodule development (fix::TnphoA) and were assigned to nine symbiotic loci. One of these appeared to be a previously undescribed locus located on the pRmeSU47a megaplasmid and to encode a membrane protein. Two others were located on the pRmeSU47b megaplasmid: one was a new locus which was induced by luteolin and encoded a membrane protein, and the other was dctA, the structural gene for dicarboxylic acid transport. The remaining six loci were located on the R. meliloti chromosome. One of these was inducible by luteolin and encoded a membrane protein which determined lipopolysaccharide structure. Three additional chromosomal loci also appeared to encode membrane proteins necessary for symbiosis. The remaining two chromosomal loci encoded periplasmic proteins required for symbiosis.  相似文献   

19.
Variation in genome size and content is common among bacterial strains. Identifying these naturally occurring differences can accelerate our understanding of bacterial attributes, such as ecological specialization and genome evolution. In this study, we used representational difference analysis to identify potentially novel sequences not present in the sequenced laboratory strain Rm1021 of the nitrogen-fixing bacterium Sinorhizobium meliloti. Using strain Rm1021 as the driver and the type strain of S. meliloti ATCC 9930, which has a genome size approximately 370 kilobases bigger than that of strain Rm1021, as the tester, we identified several groups of sequences in the ATCC 9930 genome not present in strain Rm1021. Among the 85 novel DNA fragments examined, 55 showed no obvious homologs anywhere in the public databases. Of the remaining 30 sequences, 24 contained homologs to the Rm1021 genome as well as unique segments not found in Rm1021, 3 contained sequences homologous to those published for another S. meliloti strain but absent in Rm1021, 2 contained sequences homologous to other symbiotic nitrogen-fixing bacteria (Rhizobium etli and Bradyrhizobium japonicum), and 1 contained a sequence homologous to a gene in a non-nitrogen-fixing species, Pseudomonas sp. NK87. Using PCR, we assayed the distribution of 12 of the above 85 novel sequences in a collection of 59 natural S. meliloti strains. The distribution varied widely among the 12 novel DNA fragments, from 1.7% to 72.9%. No apparent correlation was found between the distribution of these novel DNA sequences and their genotypes obtained using multilocus enzyme electrophoresis. Our results suggest potentially high rates of gene gain and loss in S. meliloti genomes.  相似文献   

20.
Mutants of alfalfa symbiont Rhizobium meliloti SU47 that fail to make extracellular polysaccharide (exo mutants) induce the formation of nodules that are devoid of bacteria and consequently do not fix nitrogen. This Fix- phenotype can be suppressed by an R. meliloti Rm41 gene that affects lipopolysaccharide structure. Here we describe mutations preventing suppression that map at two new chromosomal loci, lpsY and lpsX, present in both strains. Two other lps mutations isolated previously from SU47 also prevented suppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号