首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic acrylamide (ACR) exposure induces peripheral-central axonopathy in occupational workers and laboratory animals, but the underlying mechanisms remain unclear. In this study, we first investigated the effects of ACR on slow axonal transport of neurofilaments in cultured rat dorsal root ganglia (DRG) neurons through live-cell imaging approach. Then for the underlying mechanisms exploration, the protein level of neurofilament subunits, motor proteins kinesin and dynein, and dynamitin subunit of dynactin in DRG neurons were assessed by western blotting and the concentrations of ATP was detected using ATP Assay Kit. The results showed that ACR treatment results in a dose-dependent decrease of slow axonal transport of neurofilaments. Furthermore, ACR intoxication significantly increases the protein levels of the three neurofilament subunits (NF-L, NF-M, NF-H), kinesin, dynein, and dynamitin subunit of dynactin in DRG neurons. In addition, ATP level decreased significantly in ACR-treated DRG neurons. Our findings indicate that ACR exposure retards slow axonal transport of NF-M, and suggest that the increase of neurofilament cargoes, motor proteins, dynamitin of dynactin, and the inadequate ATP supply contribute to the ACR-induced retardation of slow axonal transport.  相似文献   

2.
《The Journal of cell biology》1995,130(6):1413-1422
The carboxy-terminal tail domains of neurofilament subunits neurofilament NF-M and NF-H have been postulated to be responsible for the modulation of axonal caliber. To test how subunit composition affects caliber, transgenic mice were generated to increase axonal NF- M. Total neurofilament subunit content in motor and sensory axons remained essentially unchanged, but increases in NF-M were offset by proportionate decreases in both NF-H and axonal cross-sectional area. Increase in NF-M did not affect the level of phosphorylation of NF-H. This indicates that (a) in vivo NF-H and NF-M compete either for coassembly with a limiting amount of NF-L or as substrates for axonal transport, and (b) NF-H abundance is a primary determinant of axonal caliber. Despite inhibition of radial growth, increase in NF-M and reduction in axonal NF-H did not affect nearest neighbor spacing between neurofilaments, indicating that cross-bridging between nearest neighbors does not play a crucial role in radial growth. Increase in NF- M did not result in an overt phenotype or neuronal loss, although filamentous swellings in perikarya and proximal axons of motor neurons were frequently found.  相似文献   

3.
Control of axonal caliber by neurofilament transport   总被引:30,自引:13,他引:17  
The role of neurofilaments, the intermediate filaments of nerve cells, has been conjectural. Previous morphological studies have suggested a close relationship between neurofilament content and axonal caliber. In this study, the regenerating neuron was used as a model system for testing the hypotheses that neurofilaments are intrinsic determinants of axonal caliber, and that neurofilament content is controlled by the axonal transport of neurofilaments. This system was chosen because previous studies had shown that, after axotomy, axonal caliber was reduced within the proximal stump of the regenerating nerve and, because the relative amount of neurofilament protein undergoing axonal transport in regenerating axons was selectively reduced. The relationship between axonal caliber and neurofilament number was examined in a systematic fashion in both regenerating and control motor axons in rat L5 ventral root. Reconstruction of the spatial and temporal sequences of axonal atrophy in the proximal stump after axotomy showed that reductions in axonal caliber were first detected in the most proximal region of the root and subsequently progressed in a proximal-to-distal direction at a rate of 1.7 mm/day, which is identical to the rate of neurofilament transport in these neurons. Quantitative ultrastructural studies showed that these reductions in caliber correlated with a proportional decrease in the number of axonal neurofilaments but not microtubules. These results support the hypotheses that neurofilament content is a major intrinsic determinant of axonal caliber and that neurofilament content is controlled by the axonal transport of neurofilaments. On this basis, we suggest a role for neurofilaments in the control of axonal volume.  相似文献   

4.
To test the hypothesis that fast anterograde molecular motor proteins power the slow axonal transport of neurofilaments (NFs), we used homologous recombination to generate mice lacking the neuronal-specific conventional kinesin heavy chain, KIF5A. Because null KIF5A mutants die immediately after birth, a synapsin-promoted Cre-recombinase transgene was used to direct inactivation of KIF5A in neurons postnatally. Three fourths of such mutant mice exhibited seizures and death at around 3 wk of age; the remaining animals survived to 3 mo or longer. In young mutant animals, fast axonal transport appeared to be intact, but NF-H, as well as NF-M and NF-L, accumulated in the cell bodies of peripheral sensory neurons accompanied by a reduction in sensory axon caliber. Older animals also developed age-dependent sensory neuron degeneration, an accumulation of NF subunits in cell bodies and a reduction in axons, loss of large caliber axons, and hind limb paralysis. These data support the hypothesis that a conventional kinesin plays a role in the microtubule-dependent slow axonal transport of at least one cargo, the NF proteins.  相似文献   

5.
The phosphorylated carboxyl-terminal "tail" domains of the neurofilament (NF) subunits, NF heavy (NF-H) and NF medium (NF-M) subunits, have been proposed to regulate axon radial growth, neurofilament spacing, and neurofilament transport rate, but direct in vivo evidence is lacking. Because deletion of the tail domain of NF-H did not alter these axonal properties (Rao, M.V., M.L. Garcia, Y. Miyazaki, T. Gotow, A. Yuan, S. Mattina, C.M. Ward, N.S. Calcutt, Y. Uchiyama, R.A. Nixon, and D.W. Cleveland. 2002. J. Cell Biol. 158:681-693), we investigated possible functions of the NF-M tail domain by constructing NF-M tail-deleted (NF-MtailDelta) mutant mice using an embryonic stem cell-mediated "gene knockin" approach that preserves normal ratios of the three neurofilament subunits. Mutant NF-MtailDelta mice exhibited severely inhibited radial growth of both motor and sensory axons. Caliber reduction was accompanied by reduced spacing between neurofilaments and loss of long cross-bridges with no change in neurofilament protein content. These observations define distinctive functions of the NF-M tail in regulating axon caliber by modulating the organization of the neurofilament network within axons. Surprisingly, the average rate of axonal transport of neurofilaments was unaltered despite these substantial effects on axon morphology. These results demonstrate that NF-M tail-mediated interactions of neurofilaments, independent of NF transport rate, are critical determinants of the size and cytoskeletal architecture of axons, and are mediated, in part, by the highly phosphorylated tail domain of NF-M.  相似文献   

6.
Neurofilaments (NFs) are prominent components of large myelinated axons. Previous studies have suggested that NF number as well as the phosphorylation state of the COOH-terminal tail of the heavy neurofilament (NF-H) subunit are major determinants of axonal caliber. We created NF-H knockout mice to assess the contribution of NF-H to the development of axon size as well as its effect on the amounts of low and mid-sized NF subunits (NF-L and NF-M respectively). Surprisingly, we found that NF-L levels were reduced only slightly whereas NF-M and tubulin proteins were unchanged in NF-H–null mice. However, the calibers of both large and small diameter myelinated axons were diminished in NF-H–null mice despite the fact that these mice showed only a slight decrease in NF density and that filaments in the mutant were most frequently spaced at the same interfilament distance found in control. Significantly, large diameter axons failed to develop in both the central and peripheral nervous systems. These results demonstrate directly that unlike losing the NF-L or NF-M subunits, loss of NF-H has only a slight effect on NF number in axons. Yet NF-H plays a major role in the development of large diameter axons.  相似文献   

7.
《The Journal of cell biology》1994,126(4):1031-1046
The high molecular weight subunits of neurofilaments, NF-H and NF-M, have distinctively long carboxyl-terminal domains that become highly phosphorylated after newly formed neurofilaments enter the axon. We have investigated the functions of this process in normal, unperturbed retinal ganglion cell neurons of mature mice. Using in vivo pulse labeling with [35S]methionine or [32P]orthophosphate and immunocytochemistry with monoclonal antibodies to phosphorylation- dependent neurofilament epitopes, we showed that NF-H and NF-M subunits of transported neurofilaments begin to attain a mature state of phosphorylation within a discrete, very proximal region along optic axons starting 150 microns from the eye. Ultrastructural morphometry of 1,700-2,500 optic axons at each of seven levels proximal or distal to this transition zone demonstrated a threefold expansion of axon caliber at the 150-microns level, which then remained constant distally. The numbers of neurofilaments nearly doubled between the 100- and 150- microns level and further increased a total of threefold by the 1,200- microns level. Microtubule numbers rose only 30-35%. The minimum spacing between neurofilaments also nearly doubled and the average spacing increased from 30 nm to 55 nm. These results show that carboxyl- terminal phosphorylation expands axon caliber by initiating the local accumulation of neurofilaments within axons as well as by increasing the obligatory lateral spacing between neurofilaments. Myelination, which also began at the 150-microns level, may be an important influence on these events because no local neurofilament accumulation or caliber expansion occurred along unmyelinated optic axons. These findings provide evidence that carboxyl-terminal phosphorylation triggers the radial extension of neurofilament sidearms and is a key regulatory influence on neurofilament transport and on the local formation of a stationary but dynamic axonal cytoskeletal network.  相似文献   

8.
The COOH-terminal tail of mammalian neurofilament heavy subunit (NF-H), the largest neurofilament subunit, contains 44-51 lysine-serine-proline repeats that are nearly stoichiometrically phosphorylated after assembly into neurofilaments in axons. Phosphorylation of these repeats has been implicated in promotion of radial growth of axons, control of nearest neighbor distances between neurofilaments or from neurofilaments to other structural components in axons, and as a determinant of slow axonal transport. These roles have now been tested through analysis of mice in which the NF-H gene was replaced by one deleted in the NF-H tail. Loss of the NF-H tail and all of its phosphorylation sites does not affect the number of neurofilaments, alter the ratios of the three neurofilament subunits, or affect the number of microtubules in axons. Additionally, it does not reduce interfilament spacing of most neurofilaments, the speed of action potential propagation, or mature cross-sectional areas of large motor or sensory axons, although its absence slows the speed of acquisition of normal diameters. Most surprisingly, at least in optic nerve axons, loss of the NF-H tail does not affect the rate of transport of neurofilament subunits.  相似文献   

9.
10.
Distinctly Phosphorylated Neurofilaments in Different Classes of Neurons   总被引:1,自引:0,他引:1  
Abstract: Recent immunohistochemical experiments revealed that specific anti-neurofilament monoclonal antibodies yield distinct patterns in different types of neurons. This led to the suggestion that neurofilaments are a family of heterogeneous molecules whose occurrence and distribution are a function of cell type. In the present study we examined the hypothesis that this heterogeneity is due to differences in the extent of phosphorylation of neurofilament proteins in distinct types of neurons. In view of the large number of potential phosphorylation sites on the heavy neurofilament protein (NF-H), we focused on this protein and examined its extent of phosphorylation in different types of neurons. This was performed using neurofilaments isolated from axons of the cholinergic bovine ventral root motor neurons and of the chemically heterogeneous bovine dorsal root neurons. Two-dimensional gel electrophoresis revealed that the isoelectric point of ventral root NF-H (pl 5.10) was ∼0.2 pl units more acidic than that of dorsal root NH-F. This difference was abolished by treating the neurofilaments with alkaline phosphatase, suggesting that the excess negative charge of ventral root NF-H is due to increased levels of phosphorylation. Amino acid analysis confirmed that the phosphoserine content of ventral root NF-H (27.2 ± 2.5% of the serines) is markedly higher than that of dorsal root NF-H (15.5 ± 6.2% of the serines). These findings provide a novel system for studying the biochemistry and function of distinctly phosphorylated neurofilaments in different types of neurons.  相似文献   

11.
The accumulation of neurofilaments required for postnatal radial growth of myelinated axons is controlled regionally along axons by oligodendroglia. Developmentally regulated processes previously suspected of modulating neurofilament number, including heavy neurofilament subunit (NFH) expression, attainment of mature neurofilament subunit stoichiometry, and expansion of interneurofilament spacing cannot be primary determinants of regional accumulation as we show each of these factors precede accumulation by days or weeks. Rather, we find that regional neurofilament accumulation is selectively associated with phosphorylation of a subset of Lys-Ser-Pro (KSP) motifs on heavy neurofilament subunits and medium-size neurofilament subunits (NFMs), rising >50-fold selectively in the expanding portions of optic axons. In mice deleted in NFH, substantial preservation of regional neurofilament accumulation was accompanied by increased levels of the same phosphorylated KSP epitope on NFM. Interruption of oligodendroglial signaling to axons in Shiverer mutant mice, which selectively inhibited this site-specific phosphorylation, reduced regional neurofilament accumulation without affecting other neurofilament properties or aspects of NFH phosphorylation. We conclude that phosphorylation of a specific KSP motif triggered by glia is a key aspect of the regulation of neurofilament number in axons during axonal radial growth.  相似文献   

12.
The Eph family of tyrosine kinase receptors has recently been implicated in various processes involving the detection of environmental cues such as axonal guidance, targeted cell migration and boundary formation. We have inactivated the mouse EphA4 gene to investigate its functions during development. Homozygous EphA4 mutant animals show peroneal muscular atrophy correlating with the absence of the peroneal nerve, the main dorsal nerve of the hindlimb. This phenotype is also observed, although with a lower penetrance, in heterozygotes. During normal hindlimb innervation, motor axons converge towards the sciatic plexus region at the base of the limb bud, where they must choose between dorsal and ventral trajectories within the limb. Among the axons emerging from the sciatic plexus, dorsal projections show higher levels of EphA4 protein than ventral axons. In EphA4 mutant mice, presumptive dorsal motor axons fail to enter the dorsal compartment of the limb and join the ventral nerve. Our data therefore suggest that the level of EphA4 protein in growing limb motor axons is involved in the selection of dorsal versus ventral trajectories, thus contributing to the topographic organisation of motor projections.  相似文献   

13.
Neurofilaments are synthesized in the cell body of neurons and transported outward along the axon via slow axonal transport. Direct observation of neurofilaments trafficking in live cells suggests that the slow outward rate of transport is due to the net effects of anterograde and retrograde microtubule motors pulling in opposition. Previous studies have suggested that cytoplasmic dynein is required for efficient neurofilament transport. In this study, we examine the interaction of neurofilaments with cytoplasmic dynein. We used fluid tapping mode atomic force microscopy to visualize single neurofilaments, microtubules, dynein/dynactin, and physical interactions between these neuronal components. AFM images suggest that neurofilaments act as cargo for dynein, associating with the base of the motor complex. Yeast two-hybrid and affinity chromatography assays confirm this hypothesis, indicating that neurofilament subunit M binds directly to dynein IC. This interaction is blocked by monoclonal antibodies directed either to NF-M or to dynein. Together these data suggest that a specific interaction between neurofilament subunit M and cytoplasmic dynein is involved in the saltatory bidirectional motility of neurofilaments undergoing axonal transport in the neuron.  相似文献   

14.
Binding of γ-Aminobutyric AcidA Receptors to Tubulin   总被引:1,自引:1,他引:0  
Abstract: The rate of axonal transport of tubulin, actin, and the neurofilament proteins was measured in the peripheral and central projections of the rat L5 dorsal root ganglion (DRG). [35S]Methionine was injected into the DRG, and the "front" of the radiolabeled protein was located 7, 14, and 20 days postinjection. Transport rates calculated for the neurofilament triplet proteins, tubulin, and actin in the peripheral nerve were ∼ 1.5-fold faster than those in the dorsal root. A progressive decrease in the rate of transport was observed from 7 to 20 days after radiolabeling in both the central and peripheral directions (neurofilaments, ∼ 1.7-fold; tubulin/actin, 2.1-fold). A surgical preparation, leaving the peripheral sciatic nerve with predominantly sensory fibers, was the basis for ELISAs for phosphorylation-dependent immunoreactivity of the high-molecular-weight neurofilament protein. In both dorsal roots and peripheral sensory axons the degree of phosphorylation was greater in nerve segments further away from the cell bodies. The degree of phosphorylation-related immunoreactivity correlates with the slowing of transport of radiolabeled cytoskeletal protein.  相似文献   

15.
Decreased phosphorylation of neurofilaments in mice lacking myelin-associated glycoprotein (MAG) was shown to be associated with decreased activities of extracellular-signal regulated kinases (ERK1/2) and cyclin-dependent kinase-5 (cdk5). These in vivo changes could be caused directly by the absence of a MAG-mediated signaling pathway or secondary to a general disruption of the Schwann cell-axon junction that prevents signaling by other molecules. Therefore, in vitro experimental paradigms of MAG interaction with neurons were used to determine if MAG directly influences expression and phosphorylation of cytoskeletal proteins and their associated kinases. COS-7 cells stably transfected with MAG or with empty vector were co-cultured with primary dorsal root ganglion (DRG) neurons. Total amounts of the middle molecular weight neurofilament subunit (NF-M), microtubule-associated protein 1B (MAP1B), MAP2, and tau were up-regulated significantly in DRG neurons in the presence of MAG. There was also increased expression of phosphorylated high molecular weight neurofilament subunit (NF-H), NF-M, and MAP1B. Additionally, in similar in vitro paradigms, total and phosphorylated NF-M were increased significantly in PC12 neurons co-cultured with MAG-expressing COS cells or treated with a soluble MAG Fc-chimera. The increased expression of phosphorylated cytoskeletal proteins in the presence of MAG in vitro was associated with increased activities of ERK 1/2 and cdk5. We propose that interaction of MAG with an axonal receptor(s) induces a signal transduction cascade that regulates expression of cytoskeletal proteins and their phosphorylation by these proline-directed protein kinases.  相似文献   

16.
Changes in the amounts of tubulin, actin, and neurofilament polypeptides were found in regenerating motoneurons of grass frogs during the period of axonal elongation. Ventral roots 9 and 10 were transected unilaterally about 7 mm from the spinal cord. 35 d later, [3H]colchicine binding had decreased in the proximal stumps to approximately one-half of contralateral control values, well before the regenerating motor axons had reinnervated skeletal muscles of the hind limb. [3H]colchicine binding did not change significantly in the operated halves of the 9th and 10th spinal cord segments over a 75-d period. The relative amounts of actin, tubulin, and neurofilament polypeptides in the operated ventral roots were measured by quantitative densitometry of stained two-dimensional electrophoretic gels. Alpha-tubulin, beta-tubulin, and the 68,000 molecular weight subunit of neurofilaments (NF68) decreased within the transected ventral roots to 78%, 57%, and less than 15% of control values, respectively. The amount of actin increased to 132% of control values within the operated ventral roots, although this change was not statistically significant. Opposite changes were found within motoneuronal cell bodies isolated from the spinal cord. The relative amounts of alpha-tubulin, beta-tubulin and NF68 within axotomized perikarya increased, respectively, to 191%, 146%, and 144% of that in control perikarya isolated from the contralateral side of the spinal cord. Thus, the changes in NF68 and tubulin did not occur uniformly throughout the injured cells. The possible structural and functional consequences of these changes are discussed.  相似文献   

17.
To examine the mechanism through which neurofilaments regulate the caliber of myelinated axons and to test how aberrant accumulations of neurofilaments cause motor neuron disease, mice have been constructed that express wild-type mouse NF-H up to 4.5 times the normal level. Small increases in NF-H expression lead to increased total neurofilament content and larger myelinated axons, whereas larger increases in NF-H decrease total neurofilament content and strongly inhibit radial growth. Increasing NF-H expression selectively slow neurofilament transport into and along axons, resulting in severe perikaryal accumulation of neurofilaments and proximal axonal swellings in motor neurons. Unlike the situation in transgenic mice expressing modest levels of human NF-H (Cote, F., J.F. Collard, and J.P. Julien. 1993. Cell. 73:35-46), even 4.5 times the normal level of wild-type mouse NF-H does not result in any overt phenotype or enhanced motor neuron degeneration or loss. Rather, motor neurons are extraordinarily tolerant of wild-type murine NF-H, whereas wild-type human NF-H, which differs from the mouse homolog at > 160 residue positions, mediates motor neuron disease in mice by acting as an aberrant, mutant subunit.  相似文献   

18.
The identification of molecular motors that modulate the neuronal cytoskeleton has been elusive. Here, we show that a molecular motor protein, myosin Va, is present in high proportions in the cytoskeleton of mouse CNS and peripheral nerves. Immunoelectron microscopy, coimmunoprecipitation, and blot overlay analyses demonstrate that myosin Va in axons associates with neurofilaments, and that the NF-L subunit is its major ligand. A physiological association is indicated by observations that the level of myosin Va is reduced in axons of NF-L-null mice lacking neurofilaments and increased in mice overexpressing NF-L, but unchanged in NF-H-null mice. In vivo pulse-labeled myosin Va advances along axons at slow transport rates overlapping with those of neurofilament proteins and actin, both of which coimmunoprecipitate with myosin Va. Eliminating neurofilaments from mice selectively accelerates myosin Va translocation and redistributes myosin Va to the actin-rich subaxolemma and membranous organelles. Finally, peripheral axons of dilute-lethal mice, lacking functional myosin Va, display selectively increased neurofilament number and levels of neurofilament proteins without altering axon caliber. These results identify myosin Va as a neurofilament-associated protein, and show that this association is essential to establish the normal distribution, axonal transport, and content of myosin Va, and the proper numbers of neurofilaments in axons.  相似文献   

19.
We have examined the distribution of microtubule-associated protein 2 (MAP2) in the lumbar segment of spinal cord, ventral and dorsal roots, and dorsal root ganglia of control and beta,beta'-iminodipropionitrile- treated rats. The peroxidase-antiperoxidase technique was used for light and electron microscopic immunohistochemical studies with two monoclonal antibodies directed against different epitopes of Chinese hamster brain MAP2, designated AP9 and AP13. MAP2 immunoreactivity was present in axons of spinal motor neurons, but was not detected in axons of white matter tracts of spinal cord and in the majority of axons of the dorsal root. A gradient of staining intensity among dendrites, cell bodies, and axons of spinal motor neurons was present, with dendrites staining most intensely and axons the least. While dendrites and cell bodies of all neurons in the spinal cord were intensely positive, neurons of the dorsal root ganglia were variably stained. The axons of labeled dorsal root ganglion cells were intensely labeled up to their bifurcation; beyond this point, while only occasional central processes in dorsal roots were weakly stained, the majority of peripheral processes in spinal nerves were positive. beta,beta'- Iminodipropionitrile produced segregation of microtubules and membranous organelles from neurofilaments in the peripheral nervous system portion and accumulation of neurofilaments in the central nervous system portion of spinal motor axons. While both anti-MAP2 hybridoma antibodies co-localized with microtubules in the central nervous system portion, only one co-localized with microtubules in the peripheral nervous system portion of spinal motor axons, while the other antibody co-localized with neurofilaments and did not stain the central region of the axon which contained microtubules. These findings suggest that (a) MAP2 is present in axons of spinal motor neurons, albeit in a lower concentration or in a different form than is present in dendrites, and (b) the MAP2 in axons interacts with both microtubules and neurofilaments.  相似文献   

20.
Sera of normal controls and of patients with neurological diseases contain antineurofilament antibodies. Recent studies suggest that biochemically and immunologically distinct subclasses of neurofilaments occur in different types of neurons. Alzheimer's disease (AD), the major cause of dementia, is associated with a marked degeneration of brain cholinergic neurons. In the present work we characterized the repertoire and age dependence of antineurofilament antibodies in normal sera and examined whether the degeneration of cholinergic neurons in AD is associated with serum antibodies directed specifically against the neurofilaments of mammalian cholinergic neurons. This was performed by immunoblot assays utilizing neurofilaments from the purely cholinergic bovine ventral root neurons and from the chemically heterogeneous bovine dorsal root neurons. Antibodies to the heavy neurofilament protein NF-H were detected in normal control sera. Their levels were significantly higher in older (aged 70–79) than in younger (aged 40–59) subjects. These antibodies bound similarly to bovine ventral root and dorsal root NF-H and their NF-H specificity was unchanged during aging. In contrast, the levels of IgG in AD sera that are directed against ventral root cholinergic NF-H were higher than those directed against the chemically heterogeneous dorsal root NF-H. Immunoblot experiments utilizing dephosphorylated ventral root and dorsal root NF-H and chymotryptic fragments of these molecules revealed that AD sera contain a repertoire of antimamalian NF-H IgG. A subpopulation of these antibodies binds to phosphorylated epitopes that are specifically enriched in ventral root cholinergic NF-H and that are located on the carboxy terminal domain of this molecule. The level of these anticholinergic NF-H IgG are significantly higher in AD sera than in those of both normal controls and patients with multi-infarct dementia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号