首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel thymocyte subpopulation expressing an unusual TCR repertoire was identified by high surface expression of the Ly-6C Ag. Ly-6C+ thymocytes were distributed among all four CD4/CD8 thymocyte subsets, and represented a readily identifiable subpopulation within each one. Ly-6C+ thymocytes express TCR-alpha beta, arise late in ontogeny, and appear in the CD4/CD8 developmental pathway after birth in a sequence that resembles that followed by conventional Ly-6C- cells during fetal ontogeny. Most interestingly, adult Ly-6C+ thymocytes express an unusual TCR-V beta repertoire that is identical to that expressed by CD4-CD8-TCR-alpha beta+ thymocytes in its overexpression of TCR-V beta 8 and in its expression of some potentially autoreactive TCR-V beta specificities. This unusual TCR-V beta repertoire was even expressed by Ly-6C+ thymocytes contained within the CD4+ CD8- 'single positive' thymocyte subset. Thus, expression of this unusual TCR-V beta repertoire is not limited to CD4-CD8-thymocytes, and is unlikely to be a consequence of their double negative phenotype. Rather, we think that Ly-6C+TCR-alpha beta+ thymocytes and CD4-CD8-TCR-alpha beta+ are developmentally interrelated, a conclusion supported by several lines of evidence including the selective failure of both Ly-6C+ and CD4-CD8-TCR-alpha beta+ thymocyte subsets to appear in TCR-beta transgenic mice. In contrast, peripheral Ly-6C+ T cells are developmentally distinct from Ly-6C+ thymocytes in that peripheral Ly-6C+ T cells expressed a conventional TCR-V beta repertoire and developed normally in TCR-beta transgenic mice in which Ly-6C+ thymocytes failed to arise. We conclude that: 1) expression of a skewed TCR-V beta repertoire is a characteristic of Ly-6C+TCR-alpha beta+ thymocytes as well as CD4-CD8-TCR-alpha beta+ thymocytes, and is not unique to thymocytes expressing neither CD4 nor CD8 accessory molecules; and 2) Ly-6C+ thymocytes are developmentally linked to CD4-CD8-TCR-alpha beta+ thymocytes, but not to Ly-6C+ peripheral T cells. We suggest that Ly-6C+TCR-alpha beta+ thymocytes are not the developmental precursors of Ly-6C+ peripheral T cells, but rather may be the developmental precursors of CD4-CD8-TCR-alpha beta+ thymocytes.  相似文献   

2.
We have characterized CD4-CD8- double negative (DN) thymocytes that express TCR-alpha beta and represent a minor thymocyte subpopulation expressing a markedly skewed TCR repertoire. We found that DN TCR-alpha beta + thymocytes resemble mature T cells in that they (a) are phenotypically CD2hiCD5hiQa2+HSA-, (b) appear late in ontogeny, and (c) are susceptible to cyclosporin A-induced maturation arrest. In addition, we found that DNA sequences 5' to the CD8 alpha gene were demethylated relative to their germline state, suggesting that DN TCR-alpha beta + thymocytes are derived from cells that had at one time expressed their CD8 alpha gene locus. Because DN TCR-alpha beta + thymocytes are known to express an unusual TCR repertoire with significant overexpression of V beta 8, we were interested in examining the possible role played by self-Ag in shaping their TCR repertoire. It has been suggested that DN TCR-alpha beta + thymocytes are derived from potentially self-reactive thymocytes that have escaped clonal deletion by down-regulating their surface expression of CD4 and/or CD8 determinants. However, apparently inconsistent with such an hypothesis, we found that the frequency of DN thymocytes expressing various anti-self TCR (V beta 6, V beta 8.1, V beta 11, V beta 17a) were not increased in strains expressing their putative self-Ag, but instead were either unaffected or significantly reduced in those strains. With regard to V beta 8 expression among DN TCR-alpha beta + thymocytes, V beta 8 overexpression in DN TCR-alpha beta + thymocytes appeared to be independent of, and superimposed on, the developmental appearance of the basic DN thymocyte repertoire. Even though V beta 8 overexpression appeared to be generated by a mechanism distinct from that generating the rest of the DN TCR-alpha beta + thymocyte repertoire, we found that super-Ag against which V beta 8 TCR react introduced into the neonatal differentiation environment also significantly reduced, rather than increased, the frequency of DN TCR-alpha beta + V beta 8+ thymocytes. Thus, the present study is consistent with DN TCR-alpha beta + thymocytes being mature cells derived from CD8+ precursors, and documents that their TCR repertoire can be influenced, at least negatively, by either self-Ag or Ag introduced into the neonatal differentiation environment. However, we found no evidence to support the hypothesis that DN TCR-alpha beta + thymocytes are enriched in cells expressing TCR reactive against self-Ag.  相似文献   

3.
This study follows our previous investigation describing the production of four cytokines (IL-2, IL-4, IFN-gamma, and TNF-alpha) by subsets of thymocytes defined by the expression of CD3, 4, 8, and 25. Here we investigate in greater detail subpopulations of CD4-CD8- double negative (DN) thymocytes. First we divided immature CD25-CD4-CD8-CD3- (CD25- triple negative) (TN) thymocytes into CD44+ and CD44- subsets. The CD44+ population includes very immature precursor T cells and produced high titers of IL-2, TNF-alpha, and IFN-gamma upon activation with calcium ionophore and phorbol ester. In contrast, the CD44- subset of CD25- TN thymocytes did not produce any of the cytokines studied under similar activation conditions. This observation indicates that the latter subset, which differentiates spontaneously in vitro into CD4+CD8+, already resembles CD4+CD8+ thymocytes (which do not produce any of the tested cytokines). We also subdivided the more mature CD3+ DN thymocytes into TCR-alpha beta- and TCR-gamma delta-bearing subsets. These cells produced cytokines upon activation with solid phase anti-CD3 mAb. gamma delta TCR+ DN thymocytes produced IL-2, IFN-gamma and TNF-alpha, whereas alpha beta TCR+ DN thymocytes produced IL-4, IFN-gamma, and TNF-alpha but not IL-2. We then studied alpha beta TCR+ DN T cells isolated from the spleen and found a similar cytokine production profile. Furthermore, splenic alpha beta TCR+ DN cells showed a TCR V beta gene expression profile reminiscent of alpha beta TCR+ DN thymocytes (predominant use of V beta 8.2). These observations suggest that at least some alpha beta TCR+ DN splenocytes are derived from alpha beta TCR+ DN thymocytes and also raises the possibility that these cells may play a role in the development of Th2 responses through their production of IL-4.  相似文献   

4.
The MTEC1 cell line,established in our laboratory,is a normal epithelial cell line derived from thymus medulla of Balb/c mice and these cells constituteively produce multiple cytokines.The selection of thymic microenvironment on developing T cells was investigated in an in vitro system.Unseparated fresh thymocytes from Balb/c mice were cocultured with MTEC1 cells or/and MTEC1-SN,then,the viability,proliferation and phenotypes of cultured thymocytes were assessed.Without any exogenous stimulus,both MTEC1 cells and MTEC1-SN were able to maintain the viability of thymocytes,while only the MTEC1 cells,not the MTEC1-SN,could directly activate thymocytes to exhibit moderate proliferation,indicating that the proliferative signal is delivered through cell surface interatcions of MTEC1 cells and thymocytes.Phenotype analysis on FACS of viable thymocytes after coculture revealed that MTEC1 cells preferentially activate the subsets of CD4^ CD8^-,CD4^ CD^8 and CD^4- CD^8- thymocytes;whereas MTEC1-SN preferentially maintained the viability of CD4^ CD^8- and CD4^-CD8^ thymocyte subsets.For the Con A-activated thymocytes.both MTEC1 cells and MTEC1-SN provided accessory signal(s) to significantly increase the number of viable cells and to markedly enhance the proliferation of thymocytes with virtually equal potency,phenotyped as CD4^ CD8^-,CD4^-CD8^ ,and CD^4-CD8^-subests,In summary,MTEC1 cells displayed Selection of thymic epithelial cells on thymocyte subsets. selective support to the different thymocyte subsets,and the selectivity is dependent on the status of thymocytes.  相似文献   

5.
A TCR-beta gene lacking V domain sequences (delta V-TCR-beta) was inserted into the germline of mice. Expression of the transgene inhibited endogenous TCR-beta, but not TCR-alpha gene rearrangement and expression. The mutated TCR-beta gene affected alpha beta T cell development: the common thymocyte pool was normal in cell number, with cells expressing CD4 and CD8, but the mature, "CD3bright" population expressing either CD4 or CD8 molecules was reduced by 90%. To help understand these effects on TCR-beta gene rearrangement and T cell development, biosynthesis of the delta V-TCR-beta protein was analyzed in a tumor cell line derived from a transgenic mouse. Despite absence of the V domain, the delta V-TCR-beta chain paired with endogenous TCR-alpha chains and assembled with CD3 gamma, -delta, -epsilon, and -zeta components in the endoplasmatic reticulum, followed by transport through the Golgi complex to the plasma membrane. Therefore, assembly of the complex, and even cell surface expression, may be relevant for allelic exclusion of the TCR-beta gene. In the common thymocyte population, the CD3 components, endogenous TCR-alpha, and the delta V-TCR-beta gene product were expressed at the RNA level, but endogenous TCR-beta was not. The TCR-alpha delta beta/CD3 complex was present at the cell surface at low levels and was functional in terms of anti-CD3-induced Ca2+ mobilization. The observed arrest of alpha beta T cell development at the CD4+8+ thymocyte stage indicates that ligand recognition by the TCR, with contribution of the beta-chain V domain, is not required for transition of CD4-8- thymocytes to the CD4+8+ phenotype, but necessary for entry into the "single positive," CD3bright differentiation stage.  相似文献   

6.
We have used the intra-thymic transfer system to investigate the population dynamics of thymocyte and mature T cell subsets in the absence of continuing precursor input from the bone marrow. We have followed the development and life span of CD4+ and CD8+ thymocyte subsets and mature peripheral T cells from intra-thymically injected adult or fetal CD4-8- thymic precursors. Both precursor types proliferated, differentiated, and exported to peripheral lymphoid tissues alpha beta-TCR+CD4+8- and CD4-8+ progeny which formed a stable, long-lived component of the peripheral T cell pool. The production of phenotypically mature thymocytes and peripheral T cells occurred more rapidly from fetal CD4-8- precursors. CD4+8-:CD4-8+ ratios among peripheral progeny of intra-thymically-injected CD4-8- precursors were initially normal, but they steadily declined among progeny of the fetal precursors. Thus, there appear to be differences in the life span and/or proliferative capacity of mature T cells derived from embryonic vs adult progenitors. In addition to the predominant CD4+8- and CD4-8+ subsets of peripheral T cells, a minor (1 to 20%) population of Thy-1+CD3+4-8- T cells was identified among peripheral progeny of intra-thymically-injected CD4-8- thymocytes, as well as in lymph nodes of unmanipulated animals. A total of 20 to 34% of this subset expressed V beta 8+ TCR and the majority were CD5hi, Pgp-1+, and J11d-. The function and specificity of this newly identified population of thymically derived peripheral T cells remains to be investigated.  相似文献   

7.
Glucocorticoid (GC) treatment is known to induce destruction of cortical thymocytes and then their reconstitution. By using the rats treated with GC, we examined the relationship between rosette-formation and surface markers (CD4 and CD8) for clarifying the processes of differentiation and maturation in rat thymocytes. Thymus weight and thymocyte count began to decrease immediately after GC administration and became minimal on 5-7 days, followed gradual recovery. The percentage of rosette-forming thymocytes began to decrease immediately after GC treatment and became minimal on 5 days, followed by recovery to the normal level by the 10th to 14th day after treatment. During the analysis of the changes in the percentage of 4 subsets (CD4-8-, CD4+8+, CD4+8+, CD4-8+) of rat thymocytes after GC treatment, the percentage of CD4+8+ cells was found to change in close relation to the change in the percentage of rosette-forming lymphocytes, suggesting that rosette-forming thymocytes are CD4+8+ cells. These results suggest that the treatment induces destruction of GC-sensitive thymocytes, possibly rosette-forming cells, followed by migration of precursor T cells (CD4-8- cells) in the thymus, and that the precursors change into rosette-forming cells (CD4+8+ cells) in the thymus, followed by differentiation and maturation into non-rosette-forming cells (CD4+8- or CD4-8+ cells).  相似文献   

8.
These experiments were designed to evaluate the role of cytokines in early T cell development within the thymus. By using a thymic organ culture model, we have studied the influence of high dose of IL-2 (10 to 1000 IU/ml) on the cell populations that are generated during 12 days starting from a thymic rudiment of 14-day-old mouse embryo. The IL-2 treatment resulted in the expansion of Thy-1+/-, CD4-, CD8-, CD3-, Fc gamma RII+, CD5 (Lyt-1)-, HSA-, Pgp- 1+, Mel-14- population. These cells had the morphology of large granular lymphocytes and displayed broad cytotoxic activity. In addition, IL-2-treated organ cultures had a dramatic decrease in CD4+CD8+ thymocytes, a marked reduction in TCR-alpha beta+ thymocytes--even more pronounced in the TCR-V beta 6+ and TCR-V beta 8+ thymocytes--and no significant changes in the number of TCR-gamma delta+ as compared to control organ cultures.  相似文献   

9.
Although considerable indirect evidence supports the hypothesis that CD4+8+ thymocytes are developmental intermediates in the generation of mature (CD4+8- or CD4-8+) T cells, the ability of these cells to proliferate in vitro has been highly controversial. We demonstrate here that a fraction of purified murine CD4+8+ thymocytes can be induced to proliferate in response to immobilized anti-TCR mAb. To exclude possible proliferation by trace mature T cell contaminants, we have exploited our recent finding that in Mlsa mice mature V beta 6-bearing thymic T cells are virtually absent (less than or equal to 0.5%) due to clonal deletion, whereas V beta 6 +CD4+8+ thymocytes are present in much higher numbers (approximately 3%). Proliferation of sorted CD4+8+ thymocytes from Mlsa mice was therefore induced at limiting dilution with immobilized anti-V beta 6 mAb to select against any contaminating mature T cells. Under optimal culture conditions, the frequency of CD4+8+ thymocytes proliferating specifically to anti-V beta 6 mAb (1/1000) was higher than those obtained for purified CD4-8+ (1/2000) or CD4+8- (1/5000) subsets, thus demonstrating directly that a proportion (in this case 3%) of CD4+8+ thymocytes are potentially clonable. During culture, V beta 6 +CD4+8+ thymocytes gave rise to a mixture of phenotypically "immature" (CD4-8-) and "mature" (CD4-8+) T cells. This system should be valuable for further analysis of the elusive CD4+8+ thymocyte subset.  相似文献   

10.
The expression of TCR-associated molecules was examined in human fetal and postnatal tissues. From gestational wk 7 onward in the fetal liver, putative prothymocytes have been identified with cytoplasmic CD3 positivity (cCD3+). These immature cells are TdT- and do not express membrane CD3 (mCD3-) or TCR beta identified by beta F1, but show CD7 and CD45 positivity without CD1, CD2, CD5, CD4, CD8, CD10, and class II Ag. Their high proliferative activity is indicated by greater than 85% Ki67 positivity. After the 10th wk, beta F1+, mCD3+ cells also appear in the liver and these are mostly Ki67- but no TCR gamma delta-bearing cells can be identified at such an early stage of extrathymic development. In the mCD3- TdT-fetal thymus (10 1/2 to 18th wk) cCD3+, mCD3- CD1-blasts proliferate (Ki67+) and lack TCR-beta or TCR-gamma delta. The TdT-, CD1+ cortical thymocytes develop into TCR-beta + and WT31-positive (TCR-alpha beta +) cells. Subsequently TdT-positive thymocytes become detectable around 19 to 20 wk, and in such glands the peak of proliferative activity is seen among TdT+, cCD3+ cells which appear to acquire, in a regular sequence, cytoplasmic beta F1 (TCR-beta), mCD3, and TCR-alpha beta (WT31 positivity) together with the loss of TdT and Ki67 positivity. A newly described transitional population of cells is TdT-, beta F1+ but exhibits no detectable WT31 positivity. These cells correspond to the CD1+, mCD3+ thymocytes and are probably the targets of thymic selection. The cells of the TCR-gamma delta lineage, detected by mAb TCR-delta-1 and delta TCS1, are rare (0.02 to 0.5%) among thymocytes from gestational wk 10 1/2 onward through the whole span of thymic development, but these cells include a proportion (18 to 59%) of cells expressing CD1 Ag, suggesting that these TCR-gamma delta cells differentiate in the thymus. Among the CD1+, TCR-gamma delta + thymocytes, no TdT positivity can be detected.  相似文献   

11.
Thymocyte cell suspensions, prepared from mice at different ages, were cultured in vitro with human rIL-2. This stimulation resulted in a cell population that contained almost 50% TCR-gamma delta-positive cells if thymocytes were taken from fetal day 17 until just after birth. Analysis of the variable (V gamma) region used by the TCR-gamma delta cells revealed that 90% of them expressed TCR-V gamma 3, and less than 5% expressed TCR-V gamma 2. Cells positive for TCR-alpha beta were barely detectable. If fetal day 18 organ cultured thymus lobes, instead of a cell suspension, were stimulated with IL-2, no rise in the number of TCR-V gamma 3+ or TCR-delta+ cells was observed, whereas a partial outgrowth of TCR-alpha beta+ cells occurred. From day 1 after birth, the number of TCR-gamma delta cells recovered from an IL-2-stimulated thymocyte cell suspension dropped to reach a plateau of 15% of the total cell number, whereas TCR-V gamma 3+ cells became undetectable in older animals. TCR-alpha beta+ cells, on the other hand, quickly rose in cell number after birth. Kinetic analysis showed that the preferential outgrowth of TCR-V gamma 3+ cells in IL-2-stimulated fetal day 18 thymocyte cell suspensions was present from the onset of the culture; a significant proliferation of CD4 or CD8 single positive TCR-alpha beta cells was never observed. This lack of proliferation of TCR-alpha beta cells was not due to inhibition by the activated TCR-V gamma 3+ cells. Throughout the IL-2 culture, one-fourth of the TCR-V gamma 3+ thymocytes was positive for CD8. Analysis of the DNA content and the IL-2 receptor (IL-2R) p55 expression showed that during the first days of culture the TCR-V gamma 3+ cells had a much higher proliferation rate than the TCR-V gamma 3- cells, although TCR-V gamma 3+ IL2R p55+ cells could not be detected. From day 3 to 4 of culture, the proliferation rate of TCR-V gamma 3+ cells equaled that of the rest of the cells and less than 20% of the TCR-V gamma 3+ cells expressed the IL-2R p55. The biologic significance of our findings is discussed.  相似文献   

12.
Thymic stromal cell clone, TNC-R3.1 cell, was established from spontaneous AKR/J mouse thymoma. TNC-R3.1 cell, which has the similar properties to thymic nurse cells, formed a unique complex with normal thymocyte subpopulations. Flow cytometry analysis demonstrated that CD4+8+ and CD4-8- immature thymocytes preferentially interacted with TNC-R3.1 stromal cell clone. CD4+8+ thymocytes, which interacted with TNC-R3.1 stromal cell clone, contained a higher proportion of large size and cycling T cells than did noninteracting CD4+8+ thymocytes. As is generally accepted, CD4+8+ thymocytes did not respond to any stimulation such as IL-2, anti-CD3 mAb (2C11), or IL-2 plus 2C11. However, culture of isolated CD4+8+ thymocytes on TNC-R3.1 stromal cell monolayer in the presence of suboptimal dose of IL-2 induced a significant cell growth. Moreover, the addition of 2C11 and IL-2 into this coculture system resulted in a dramatic increase of the proliferative response of thymocytes. Flow cytometry analysis showed the proliferating cells on TNC-R3.1, which originated from CD4+8+ thymocytes, were mostly TCR-alpha beta+ CD3+CD4-8+ T cells. These results provide in vitro evidence that CD4+8+ thymocytes are at an intermediate stage of T cell maturation and TNC-R3.1 stromal cell clone induces the growth and differentiation of CD4+8+ thymocytes into CD4-8+ T cells.  相似文献   

13.
We have studied the effects of the steroid hormones, 17 beta-estradiol and dexamethasone, on the relative proportion of thymocyte expression of CD4 (L3T4), CD8 (Ly-2), TCR and IL-2R, used to identify different stages of thymocyte differentiation. After short-term in vivo steroid treatment, a significant decrease in the number and proportion of the CD4+/CD8+, double positive subpopulation was observed in parallel with a proportional increase in the percentage of the CD4+/CD8- single positive, of the CD4-/CD8-, double negative and, to a lesser extent, of the CD8+/CD4- subsets. Either steroid treatment increased the proportion of cells expressing either the epsilon-chain of the CD3 complex and/or the beta-chain of the TCR (beta-TCR) (TCR+/CD3+) and the 55 kDa protein of the IL-2R (IL-2R+), related to the increase of CD4+ SP thymocytes and of DN cells, respectively. Furthermore, the increased proportion of CD3+ cells could also be partially related to the increase of both the CD4+ and DN subsets. A decrease of the effect on either DN/IL-2R+ cells or CD4+ SP cells was selectively observed after long-term treatments with 17 beta-estradiol or DEX, respectively. It is concluded that after short-term administration, different steroid hormones mediate a similar selective depletion of DP, TCR-/CD3-, IL2R- cells presumably in an intermediate stage of differentiation. However, either steroid effects evolve differently in long-term treatment schedules, resulting in different effects on early (DN/IL2R+) and late (SP/IL2R-) steps of thymocyte differentiation.  相似文献   

14.
Enhanced glucose metabolism is necessary to support the activation and proliferation of lymphocytes. To define further quantitatively the metabolic fates of glucose and assess glucose utilization both in normal cells and in an autoimmune disease with abnormal lymphocytes, [U-14C]glucose conversion into 14CO2 and the production of lactate and pyruvate were measured in splenocytes. Cells from non-diabetes-prone (BBn) and spontaneously diabetic (BBd) rats were studied both freshly isolated 'resting' and cultured for 96 h with and without concanavalin A (Con A) stimulation. (1) Lactate was confirmed to be the major end product in both freshly isolated (53% of utilized glucose) and unstimulated cultured (62% of utilized glucose) cells from BBn animals studied at (2-8) x 10(6) cells/ml concentration. The use of concentrations from 10 x 10(6) to 300 x 10(6) cells/ml resulted in progressively less lactate production per 10(6) splenocytes. (2) Cells from BBd animals after stimulation with Con A incorporated less [3H]thymidine and produced significantly less lactate (155 +/- 14 versus 305 +/- 24 nmol/2 h per 10(6) cells) than did BBn cells (P less than 0.05). (3) However, more lactate (101 +/- 8 versus 78 +/- 6 nmol/5 h per 10(6) cells) was produced by 'resting' cells from BBd animals compared with BBn (P less than 0.03), and this difference was sustained after 4 days in culture. (4) Significantly greater amounts of pyruvate were produced by BBd than by BBn cells, particularly when stimulated with Con A, suggesting an alteration in the availability of reducing equivalents in BBd cells. (5) These results are consistent with prior metabolic as well as immunological 'activation' of cells in vivo in the BB diabetic animals.  相似文献   

15.
Morphine-induced thymic hypoplasia is glucocorticoid-dependent.   总被引:5,自引:0,他引:5  
Mice administered morphine as a s.c. pellet implant exhibit a marked and sustained thymic hypoplasia as well as suppression of T lymphocyte functions. In the present study, the effects of morphine on thymocyte differentiation were characterized. Morphine produced a significant decrease in both the number and proportion of CD4+/CD8+ double positive (DP) cells. The percentage of the CD4+/CD8-, CD4-/CD8+, and CD4-/CD8- double negative subsets in these mice was proportionally increased. Morphine also increased the proportion of cells expressing either the epsilon-chain of the CD3 complex or the IL-2R. The initial reduction in the proportion of DP thymocytes appeared fully recovered by 10 days post-implantation, although the number of DP thymocytes gradually returned to normal over a 3-wk period. Morphine administration resulted in a marked increase in serum corticosterone levels, and a single injection of dexamethasone mimicked the effects of morphine on thymus differentiation. Furthermore, adrenalectomy abolished the morphine-induced decrease in CD4+/CD8+ thymocytes relative to a sham-operated group. The present findings are consistent with the hypothesis that morphine-induced thymic hypoplasia may be mediated by an increase in the circulating levels of corticosterone.  相似文献   

16.
Cytokine production by mature and immature thymocytes.   总被引:4,自引:0,他引:4  
We have studied the ability of subpopulations of activated thymocytes to produce four cytokines (IL-2, IL-4, IFN-gamma and TNF-alpha) which are believed to play roles in T cell development. Supernatants from various thymocyte subsets activated with calcium ionophore and PMA were tested for these cytokines. All CD3hi thymocyte subsets (CD4+8-, CD4-8- and CD4-8+) produced high titers of these four cytokines except CD3+4-8+ thymocytes, which did not produce IL-4. In contrast, CD4+8+ thymocytes did not produce any detectable cytokines. CD3-4-8- thymocytes produced IL-2, IFN-gamma, and TNF-alpha (but not IL-4) when activated by calcium ionophore + PMA and IL-1. We then separated CD3-4-8- thymocytes into IL-2R+ and IL-2R-. CD3-4-8-IL-2R+ thymocytes only produced small amounts of IL-2 when activated with calcium ionophore + PMA + IL-1, whereas CD3-4-8-IL-2R- thymocytes did not require IL-1 to produce IL-2, IFN-gamma, and TNF-alpha. Finally, CD4-8+3- thymocytes (an immature population believed to be an intermediate between CD3-4-8- and CD4+8+ thymocytes) only produced marginally detectable levels of IL-2 upon stimulation with calcium ionophore, PMA, and the addition of IL-1 did not result in increased levels of cytokine production. These observations indicate discrete patterns of cytokine production by the subsets studied and suggest specific controls of cytokine gene expression during T cell development.  相似文献   

17.
The role of lymphostromal complexes in T-cell differentiation is far from elucidated, mainly because a clear association of a particular stromal cell type with a distinct thymocyte subset has never been identified. Using an in vitro system, detecting the adherence of thymocytes to a thymic medullary epithelial cell line (E-5), we showed that the phenotype of these thymocytes was that of cortical type: Thy-1hi, LFA-1+, PNAhi, CD4+CD8+, MEL-14-/lo, IL-2R-, CD3-/lo, and TcR V beta 8-/lo. They were enriched in cells in G2/M at the time of complex formation, showed a higher basal proliferation in culture, and did not respond to PHA, IL-2 and only marginally to Con A. These data show that complex formation with mouse thymic medullary epithelium selects for CD4+CD8+ thymocytes, as shown by the marked decrease in CD4+CD8-/CD4-CD8+ thymocytes, and the incapacity of CD4-CD8- thymocytes to adhere.  相似文献   

18.
Oxygen free radicals have been shown to interfere with pancreatic islet beta cell function and integrity, and have been implicated in autoimmune type 1 diabetes. We hypothesized that the spontaneous autoimmune type 1 diabetes of the BB rat would be prevented by in vivo administration of a free-radical spin trap, alpha-phenyl-N-tert-butylnitrone (PBN). Twenty-eight diabetes-prone (BBdp) and 13 non-diabetes-prone (BBn) rats received PBN (10 mg/kg) subcutaneously twice daily, and 27 BBdp and 12 BBn rats received saline as controls. Rats were treated from age 47 +/- 6 days until diabetes onset or age 118 +/- 7 days. PBN caused no growth, biochemical, or hematological side effects. Sixteen control BBdp rats became diabetic (BBd, mean age 77 +/- 6 days) and six demonstrated impaired glucose tolerance (IGT rats). The incidence of diabetes and IGT was not different in PBN-treated BBdp rats. Saline-treated rats showed no differences in pancreatic malondialdehyde (MDA) contents of BBd, IGT rats, and the BBdp that did not develop diabetes, versus BBn rats (2.38 +/- 0.35 nmoL/g). Among rats receiving PBN, BBn had lower pancreatic MDA than BBd and IGT rats (1.38 +/- 0.15 vs. 1.88 +/- 0.15 and 2.02 +/- 0.24 nmoL/g, p < 0.05), but not than BBdp rats (1.78 +/- 0.12 nmoL/g, ns). BBn rats receiving PBN also had lower pancreatic MDA than the saline controls (p < 0.05). Thus, PBN is remarkably nontoxic and is able to decrease MDA in the absence of the autoimmune process, but does not prevent diabetes. A combination of PBN with other complementary antioxidant agents may hold better promise for disease prevention.  相似文献   

19.
In a previous study, we raised a mAb (MTS 35) reacting with a plasma membrane Ag expressed on both cortical thymocytes and a subset of thymic medullary epithelial cells. In view of the shared expression of this molecule, we have defined it as thymic shared Ag-1 (TSA-1). Considering its selective reactivity with cortical, but not medullary thymocytes, the relevance of TSA-1 as a marker of immature T cells was investigated in detail in this study, using multicolor flow cytometric analysis. TSA-1 was found on all immature thymocyte subsets (CD3-4-8-, CD3-4+8-, CD3-4-8+, CD3-4+8+, CD3low4+8+). Conversely, CD3high4+8- and CD3high4-8+ thymocytes, early thymic migrants and peripheral T cells were TSA-1-. More refined gating and analysis of the transitional CD3intermediate/high4+8+ thymocytes, proposed candidates for negative selection, demonstrated that approximately one half were TSA-1-. In fact, there was a directly inverse relationship between TSA-1 and CD3 expression on thymocytes. In the periphery, TSA-1 was detected on B lymphocytes. TSA-1 is PI-linked and has a molecular mass of 17 kDa nonreduced, or 12 to 13 kDa reduced. Through cross-correlation analysis, this molecule was distinct from H-2K, PNA-R, CD5, CD11a/18, Thy-1, HSA, Ly6A/E, Ly6C, ThB, CD25, CD44. Hence TSA-1 appears to be a unique marker which exquisitely separates mature from immature thymocytes.  相似文献   

20.
Murine CD3+,CD4-,CD8- peripheral T cells, which express various forms of the TCR-gamma delta on their cell surface, have been characterized in terms of their cell-surface phenotype, proliferative and lytic potential, and lymphokine-producing capabilities. Three-color flow cytofluorometric analysis demonstrated that freshly isolated CD3+,CD4-, CD8- TCR-gamma delta lymph node cells were predominantly Thy-1+,CD5dull,IL-2R-,HSA-,B220-, and approximately 70% Ly-6C+ and 70% Pgp-1+. After CD3+,CD4-,CD8-splenocytes were expanded for 7 days in vitro with anti-CD3-epsilon mAb (145-2C11) and IL-2, the majority of the TCR-gamma delta cells expressed B220 and IL-2R, and 10 to 20% were CD8+. In comparison to CD8+ TCR-alpha beta T cells, the population of CD8+ TCR-gamma delta-bearing T cells exhibited reduced levels of CD8, and about 70% of the CD8+ TCR-gamma delta cells did not express Lyt-3 on the cell surface. Functional studies demonstrated that splenic TCR-gamma delta cells proliferated when stimulated with mAb directed against CD3-epsilon, Thy-1, and Ly-6C, but not when incubated with an anti-TCR V beta 8 mAb, consistent with the lack of TCR-alpha beta expression. In addition, activated CD3+,CD4-,CD8- peripheral murine TCR-gamma delta cells were capable of lysing syngeneic FcR-bearing targets in the presence of anti-CD3-epsilon mAb and the NK-sensitive cell line, YAC-1, in the absence of anti-CD3-epsilon mAb. Finally, activated CD3+, CD4-,CD8-,TCR-gamma delta+ splenocytes were also capable of producing IL-2, IL-3, IFN-gamma, and TNF when stimulated in vitro with anti-CD3-epsilon mAb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号