首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent analyses have shown that the activity of the yeast nuclear exosome is stimulated by the Trf4p-Air1/2p-Mtr4p polyadenylation (TRAMP) complex. Here, we report that strains lacking the Rrp6p component of the nuclear exosome accumulate polyadenylated forms of many different ribosomal RNA precursors (pre-rRNAs). This polyadenylation is reduced in strains lacking either the poly(A) polymerase Trf4p or its close homologue Trf5p. In contrast, polyadenylation is enhanced by overexpression of Trf5p. Polyadenylation is also markedly increased in strains lacking the RNA helicase Mtr4p, indicating that it is required to couple poly(A) polymerase activity to degradation. Tandem affinity purification-tagged purified Trf5p showed polyadenylation activity in vitro, which was abolished by a double point mutation in the predicted catalytic site. Trf5p co-purified with Mtr4p and Air1p, indicating that it forms a complex, designated TRAMP5, that has functions that partially overlap with the TRAMP complex.  相似文献   

2.
Many steps in nuclear RNA processing, surveillance, and degradation require TRAMP, a complex containing the poly(A) polymerase Trf4p, the Zn-knuckle protein Air2p, and the RNA helicase Mtr4p. TRAMP polyadenylates RNAs designated for decay or trimming by the nuclear exosome. It has been unclear how polyadenylation by TRAMP differs from polyadenylation by conventional poly(A) polymerase, which produces poly(A) tails that stabilize RNAs. Using reconstituted S. cerevisiae TRAMP, we show that TRAMP inherently suppresses poly(A) addition after only 3-4 adenosines. This poly(A) tail length restriction is controlled by Mtr4p. The helicase detects the number of 3'-terminal adenosines and, over several adenylation steps, elicits precisely tuned adjustments of ATP affinities and rate constants for adenylation and TRAMP dissociation. Our data establish Mtr4p as a critical regulator of polyadenylation by TRAMP and reveal that an RNA helicase can control the activity of another enzyme in a highly complex fashion and in response to features in RNA.  相似文献   

3.
4.
A new yeast poly(A) polymerase complex involved in RNA quality control   总被引:2,自引:0,他引:2  
Eukaryotic cells contain several unconventional poly(A) polymerases in addition to the canonical enzymes responsible for the synthesis of poly(A) tails of nuclear messenger RNA precursors. The yeast protein Trf4p has been implicated in a quality control pathway that leads to the polyadenylation and subsequent exosome-mediated degradation of hypomethylated initiator tRNAMet (tRNAiMet). Here we show that Trf4p is the catalytic subunit of a new poly(A) polymerase complex that contains Air1p or Air2p as potential RNA-binding subunits, as well as the putative RNA helicase Mtr4p. Comparison of native tRNAiMet with its in vitro transcribed unmodified counterpart revealed that the unmodified RNA was preferentially polyadenylated by affinity-purified Trf4 complex from yeast, as well as by complexes reconstituted from recombinant components. These results and additional experiments with other tRNA substrates suggested that the Trf4 complex can discriminate between native tRNAs and molecules that are incorrectly folded. Moreover, the polyadenylation activity of the Trf4 complex stimulated the degradation of unmodified tRNAiMet by nuclear exosome fractions in vitro. Degradation was most efficient when coupled to the polyadenylation activity of the Trf4 complex, indicating that the poly(A) tails serve as signals for the recruitment of the exosome. This polyadenylation-mediated RNA surveillance resembles the role of polyadenylation in bacterial RNA turnover.  相似文献   

5.
Effective turnover of many incorrectly processed RNAs in yeast, including hypomodified tRNA(iMet), requires the TRAMP complex, which appends a short poly(A) tail to RNA designated for decay. The poly(A) tail stimulates degradation by the exosome. The TRAMP complex contains the poly(A) polymerase Trf4p, the RNA-binding protein Air2p, and the DExH RNA helicase Mtr4p. The role of Mtr4p in RNA degradation processes involving the TRAMP complex has been unclear. Here we show through a genetic analysis that MTR4 is required for degradation but not for polyadenylation of hypomodified tRNA(iMet). A suppressor of the trm6-504 mutation in the tRNA m(1)A58 methyltransferase (Trm6p/Trm61p), which causes a reduced level of tRNA(iMet), was mapped to MTR4. This mtr4-20 mutation changed a single amino acid in the conserved helicase motif VI of Mtr4p. The mutation stabilizes hypomodified tRNA(iMet) in vivo but has no effect on TRAMP complex stability or polyadenylation activity in vivo or in vitro. We further show that purified recombinant Mtr4p displays RNA-dependent ATPase activity and unwinds RNA duplexes with a 3'-to-5' polarity in an ATP-dependent fashion. Unwinding and RNA-stimulated ATPase activities are strongly reduced in the recombinant mutant Mtr4-20p, suggesting that these activities of Mtr4p are critical for degradation of polyadenylated hypomodified tRNA(iMet).  相似文献   

6.
7.
8.
9.
10.
We previously hypothesized that HEAT-repeat (Huntington, elongation A subunit, TOR) ribosome synthesis factors function in ribosome export. We report that the HEAT-repeat protein Sda1p is a component of late 60S pre-ribosomes and is required for nuclear export of both ribosomal subunits. In strains carrying the ts-lethal sda1-2 mutation, pre-60S particles were rapidly degraded following transfer to 37 degrees C. Polyadenylated forms of the 27S pre-rRNA and the 25S rRNA were detected, suggesting the involvement of the Trf4p/Air/Mtr4p polyadenylation complex (TRAMP). The absence of Trf4p suppressed polyadenylation and stabilized the pre-rRNA and rRNA. The absence of the nuclear exosome component Rrp6p also conferred RNA stabilization, with some hyperadenylation. We conclude that the nuclear-restricted pre-ribosomes are polyadenylated by TRAMP and degraded by the exosome. In sda1-2 strains at 37 degrees C, pre-40S and pre-60S ribosomes initially accumulated in the nucleoplasm, but then strongly concentrated in a subnucleolar focus, together with exosome and TRAMP components. Localization of pre-ribosomes to this focus was lost in sda1-2 strains lacking Trf4p or Rrp6p. We designate this nucleolar focus the No-body and propose that it represents a site of pre-ribosome surveillance.  相似文献   

11.
12.
13.
ZCCHC9 is a human nuclear protein with sequence homology to yeast Air1p/Air2p proteins which are RNA-binding subunits of the Trf4/Air2/Mtr4 polyadenylation (TRAMP) complex involved in nuclear RNA quality control and degradation in yeast. The ZCCHC9 protein contains four retroviral-type zinc knuckle motifs. Here, we report the NMR spectral assignment of the zinc knuckle region of ZCCHC9. These data will allow performing NMR structural and RNA-binding studies of ZCCHC9 with the aim to investigate its role in the RNA quality control in human.  相似文献   

14.
15.
The yeast putative RNA helicase Mtr4p is implicated in exosome-mediated RNA quality control in the nucleus, interacts with the exosome, and is found in the ‘TRAMP’ complex with a yeast nuclear poly(A) polymerase (Trf4p/Pap2p or Trf5p) and a putative RNA-binding protein, Air1p or Air2p. Depletion of the Trypanosoma brucei MTR4-like protein TbMTR4 caused growth arrest and defects in 5.8S rRNA processing similar to those seen after depletion of the exosome. TbNPAPL, a nuclear protein which is a putative homolog of Trf4p/Pap2p, was required for normal cell growth. Depletion of MTR4 resulted in the accumulation of polyadenylated rRNA precursors, while depletion of TbNPAPL had little effect. These results suggest that polyadenylation-dependent nuclear rRNA quality control is conserved in eukaryotic evolution. In contrast, there was no evidence for a trypanosome TRAMP complex since no stable interactions between TbMTR4 and the exosome, TbNPAPL or RNA-binding proteins were detected.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号