首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ispF gene product in Escherichia coli has been shown to catalyze the formation of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate (MEC) in the deoxyxylulose (DOXP) pathway for isoprenoid biosynthesis. In this work, the E. coli gene ispF and its Bacillus subtilis orthologue, yacN, were deleted and conditionally complemented by expression of these genes from distant loci in the respective organisms. In E. coli, complementation was achieved through integration of ispF at the araBAD locus with control from the arabinose-inducible araBAD promoter, while in B. subtilis, yacN was placed at amyE under control of the xylose-inducible xylA promoter. In both cases, growth was severely retarded in the absence of inducer, consistent with these genes being essential for survival. E. coli cells depleted of MEC synthase revealed a filamentous phenotype. This was in contrast to the depletion of MEC synthase in B. subtilis, which resulted in a loss of rod shape, irregular septation, multicompartmentalized cells, and thickened cell walls. To probe the nature of the predominant deficiency of MEC synthase-depleted cells, we investigated the sensitivity of these conditionally complemented mutants, grown with various concentrations of inducer, to a wide variety antibiotics. Synthetic lethal behavior in MEC synthase-depleted cells was prevalent for cell wall-active antibiotics.  相似文献   

2.
A new series of acid-stable antifungal agents having strong inhibitory activity against Candida albicans N-myristoyltransferase (CaNmt) has been developed starting from acid-unstable benzofuranylmethyl aryl ether 2. The inhibitor design is based on X-ray crystallographic analysis of a CaNmt complex with aryl ether 3. Among the new inhibitors, pyridine derivative 8b and benzimidazole derivative 8k showed clear antifungal activity in a murine systemic candidiasis model.  相似文献   

3.
1. A major component of the lipids in aqueous (pH7.5) homogenates of tuber tissue from Solanum tuberosum was isolated and characterized as 9-(nona-1',3'-dienoxy)non-8-enoic acid. 2. This novel unsaturated ether fatty acid derivative, which contains a butadienylvinyl ether function, has the structure: [Formula: see text] and is formed from linoleic acid by a sequence of enzymic reactions. 3. A precursor of the unsaturated ether derivative is 9-d-hydroperoxyoctadeca-10,12-dienoic acid, formed by the action of S. tuberosum lipoxygenase on linoleic acid. 4. An enzyme that converts the fatty acid hydroperoxide into the unsaturated ether derivative was isolated from S. tuberosum. The pH optimum of this enzyme is approx. 9, although the overall conversion of linoleic acid into the ether derivative is maximal at pH7.5. 5. An unusual feature of this pathway is the insertion of an oxygen atom into the alkyl chain of a fatty acid. 6. This novel mechanism may play a role in the breakdown of polyunsaturated fatty acids to volatile products in plants.  相似文献   

4.
Most of the available data on the nitric oxide (NO) pathway in the vasculature is derived from studies performed with cells isolated from conduit arteries. We investigated the expression and regulation of components of the NO synthase (NOS)-NO-cGMP pathway in endothelial cells from the mesenteric vascular bed. Basally, or in response to bradykinin, cultured mesenteric endothelial cells (MEC) do not release NO and do not express endothelial NOS protein. MEC treated with cytokines, but not untreated cells, express inducible NOS (iNOS) mRNA and protein, increase nitrite release, and stimulate cGMP accumulation in reporter smooth muscle cells. Pretreatment of MEC with genistein abolished the cytokine-induced iNOS expression. On the other hand, exposure of MEC to the microtubule depolymerizing agent colchicine did not affect the cytokine-induced increase in nitrite formation and iNOS protein expression, whereas it inhibited the induction of iNOS in smooth muscle cells. Collectively, our findings demonstrate that MEC do not express endothelial NOS but respond to inflammatory stimuli by expressing iNOS, a process that is blocked by tyrosine kinase inhibition but not by microtubule depolymerization.  相似文献   

5.
Aerobic metabolism produces reactive oxygen species, including superoxide anions, which cause DNA damage unless removed by scavengers such as superoxide dismutases. We show that loss of the Cu,Zn-dependent superoxide dismutase, SOD1, or its copper chaperone, LYS7, confers oxygen-dependent sensitivity to replication arrest and DNA damage in Saccharomyces cerevisiae. We also find that sod1Delta strains, and to a lesser extent lys7Delta strains, when arrested with hydroxyurea (HU) show reduced induction of the MEC1 pathway effector Rnr3p and of Hug1p. The HU sensitivity of sod1Delta and lys7Delta strains is suppressed by overexpression of TKL1, a transketolase that generates NADPH, which balances redox in the cell and is required for ribonucleotide reductase activity. Our results suggest that the MEC1 pathway in sod1Delta mutant strains is sensitive to the altered cellular redox state due to increased superoxide anions and establish a new relationship between SOD1, LYS7, and the MEC1-mediated checkpoint response to replication arrest and DNA damage in S. cerevisiae.  相似文献   

6.
A mutant of Zymomonas mobilis with an increased content of tetrahydroxybacteriohopane (THBH) was isolated. From comparisons of hopanoids of THBH, a glucosamine and an ether derivative of THBH between the parent strain, THBH-decreased and THBH-increased mutants, the biosynthetic pathway of the side-chain of these hopanoids is discussed.  相似文献   

7.
Advanced salivary gland mucoepidermoid carcinoma (MEC) is a relentless cancer that exhibits resistance to conventional chemotherapy. As such, treatment for patients with advanced MEC is tipically radical surgery and radiotherapy. Facial disfigurement and poor quality of life are frequent treatment challenges, and many patients succumb to loco-regional recurrence and/or metastasis. We know that cancer stem-like cells (CSC) drive MEC tumorigenesis. The current study tests the hypothesis that MEC CSC are sensitive to therapeutic inhibition of mTOR. Here, we report a correlation between the long-term clinical outcomes of 17 MEC patients and the intratumoral expression of p-mTOR (p = 0.00294) and p-S6K1 (p = 0.00357). In vitro, we observed that MEC CSC exhibit constitutive activation of the mTOR signaling pathway (i.e., mTOR, AKT, and S6K1), unveiling a potential strategy for targeted ablation of these cells. Using a panel of inhibitors of the mTOR pathway, i.e., rapamycin and temsirolimus (mTOR inhibitors), buparlisib and LY294002 (AKT inhibitors), and PF4708671 (S6K1 inhibitor), we observed consistently dose-dependent decrease in the fraction of CSC, as well as inhibition of secondary sphere formation and self-renewal in three human MEC cell lines (UM-HMC-1,-3A,-3B). Notably, therapeutic inhibition of mTOR with rapamycin or temsirolimus induced preferential apoptosis of CSC, when compared to bulk tumor cells. In contrast, conventional chemotherapeutic drugs (cisplatin, paclitaxel) induced preferential apoptosis of bulk tumor cells and accumulation of CSC. In vivo, therapeutic inhibition of mTOR with temsirolimus caused ablation of CSC and downregulation of Bmi-1 expression (major inducer of stem cell self-renewal) in MEC xenografts. Transplantation of MEC cells genetically silenced for mTOR into immunodeficient mice corroborated the results obtained with temsirolimus. Collectively, these data demonstrated that mTOR signaling is required for CSC survival, and unveiled the therapeutic potential of targeting the mTOR pathway for elimination of highly tumorigenic cancer stem-like cells in salivary gland mucoepidermoid carcinoma.Subject terms: Cancer stem cells, Cancer stem cells, Head and neck cancer, Oral cancer  相似文献   

8.
The incorporation of 13C labelled glucose into trichocolein, deoxytomentellin, trans-phytol and stigmasterol has been studied in axenic cultures of the liverwort Trichocolea tomentella. Quantitative 13C NMR spectroscopic analysis of the resulting labelling patterns showed that the isoprene units of the hemi- and monoterpenoid moieties and the diterpene phytol are derived from the methylerythritol phosphate pathway, whereas the isoprene units of stigmasterol are built up via the mevalonic acid pathway. These results indicate the involvement of both IPP biosynthetic pathways in different cellular compartments. A new, hydroperoxy geranyl phenyl ether derivative is also described.  相似文献   

9.
New dimethylamino truncated squalene ether derivatives containing a different aromatic moiety (phenyl, naphthyl, and biphenyl) or a simple alkyl (n-hexylic) group were synthesized as inhibitors of the oxidosqualene cyclase (OSC) and of the sterol biosynthetic pathway. The activity against human OSC was compared with the activity against the OSCs of pathogenic organisms such as Pneumocystis carinii and Trypanosoma cruzi. The phenyl derivative was the most potent inhibitor of T. cruzi OSC.  相似文献   

10.
In our screening for new antibiotics from bacteria, the streptomycete isolate M097 from Jiaozhou Bay in China was found to produce aloesaponarin II (1a) and 1,6-dihydroxy-8-hydroxymethyl-anthraquinone (2). Similarly, a terrestrial streptomycete GW24/1694 produced 1a and its methyl ether, the new compound 1-hydroxy-6-methoxy-8-methyl-anthraquinone (1b). All structures were derived by spectrochemical analysis and by comparison with reference data. The results showed that the marine streptomycete isolate M097 and the terrestrial streptomycete GW24/1694 could be a promising material for studying the biosynthetic pathway of polyketides.  相似文献   

11.
Inactivation of the ARF-p53 tumor suppressor pathway leads to immortalization of murine fibroblasts. The role of this pathway in immortalization of human epithelial cells is not clear. We analyzed the functionality of the p14(ARF)-p53 pathway in human mammary epithelial cells (MEC) immortalized by human papillomavirus 16 (HPV16) E6, the p53 degradation-defective E6 mutant Y54D, or hTERT. E6-MEC or E6Y54D-MEC maintains high-level expression of p14(ARF). Late-passage hTERT-immortalized MEC express p53 but down-regulate p14(ARF). Enforced expression of p14(ARF) induces p53-dependent senescence in hTERT-MEC, while both E6-MEC and E6Y54D-MEC are resistant. We show that E6Y54D inhibits p14(ARF)-induced activation of p53 without inactivation of the p53-dependent DNA damage response. Hence, p53 degradation and inhibition of p14(ARF) signaling to p53 are independent functions of HPV16 E6. Our observations imply that long-term proliferation of MEC requires inactivation of the p14(ARF)-p53 pathway.  相似文献   

12.
Mucoepidermoid carcinoma (MEC) accounts for approximately 30% of malignant salivary gland tumors and approximately 30% occur in minor salivary glands. The palate is the most frequent localization for those arising in minor glands. A 33-year-old male patient with MEC of the hard palate was treated as an acute odontogenic infection, which was not cured after tooth endodontic treatments, repeated incisions and antibiotics. On the hard palate ovoid, a hard painless mass, which had not extended over the middle palatal line, was observed. Partial maxillectomy was performed. A review of the literature was performed in order to provide a coherent overview on the differential diagnosis of palatal lesions. To the best of authors' knowledge, this is the first report in English literature describing palatal MEC misdiagnosed and treated as odontogenic infection. Considering the extensive list of MEC's differential diagnoses on the hard palate, acute odontogenic infection can now be added to that list.  相似文献   

13.
We examined microbial activity in the rumen to cleave benzyl ether bonds of lignin model compounds that fluoresced when the bonds were cleaved. 4-Methylumbelliferone veratryl ether dimer was degraded completely within 8 h even in the presence of fungicidal antibiotics, but no significant degradation occurred with bactericidal antibiotics. Degradation of a phenolic beta-O-4 trimer incorporating 4-methylumbelliferone by a benzyl ether linkage was stimulated by ruminal microbes, although its corresponding non-phenolic model compound, 1-(4-ethoxy-3-methoxyphenyl)-1-O-(4-methylumbelliferyl)-2-(2-methoxyp henoxy)-3-propanol, was not degraded. A coniferyl dehydrogenation polymer bearing fluorescent beta-O-4 benzyl ether that contains both phenolic and non-phenolic benzyl ether bonds was partially degraded (about 20%) in 48 h. These results suggest that ruminal microbes decompose benzyl ether linkages of lignin polymers under anaerobic conditions.  相似文献   

14.
Haplotype reconstruction from SNP fragments by minimum error correction   总被引:5,自引:0,他引:5  
MOTIVATION: Haplotype reconstruction based on aligned single nucleotide polymorphism (SNP) fragments is to infer a pair of haplotypes from localized polymorphism data gathered through short genome fragment assembly. An important computational model of this problem is the minimum error correction (MEC) model, which has been mentioned in several literatures. The model retrieves a pair of haplotypes by correcting minimum number of SNPs in given genome fragments coming from an individual's DNA. RESULTS: In the first part of this paper, an exact algorithm for the MEC model is presented. Owing to the NP-hardness of the MEC model, we also design a genetic algorithm (GA). The designed GA is intended to solve large size problems and has very good performance. The strength and weakness of the MEC model are shown using experimental results on real data and simulation data. In the second part of this paper, to improve the MEC model for haplotype reconstruction, a new computational model is proposed, which simultaneously employs genotype information of an individual in the process of SNP correction, and is called MEC with genotype information (shortly, MEC/GI). Computational results on extensive datasets show that the new model has much higher accuracy in haplotype reconstruction than the pure MEC model.  相似文献   

15.
The evolutionarily conserved MEC1 checkpoint pathway mediates cell cycle arrest and induction of genes including the RNR (Ribonucleotide reductase) genes and HUG1 (Hydroxyurea, ultraviolet, and gamma radiation) in response to DNA damage and replication arrest. Rnr complex activity is in part controlled by cytoplasmic localization of the Rnr2p–Rnr4p subunits and inactivation of negative regulators Sml1p and Dif1p upon DNA damage and hydroxyurea (HU) treatment. We previously showed that a deletion of HUG1 rescues lethality of mec1Δ and suppresses dun1Δ strains. In this study, multiple approaches demonstrate the regulatory response of Hug1p to DNA damage and HU treatment and support its role as a negative effector of the MEC1 pathway. Consistent with our hypothesis, wild-type cells are sensitive to DNA damage and HU when HUG1 is overexpressed. A Hug1 polyclonal antiserum reveals that HUG1 encodes a protein in budding yeast and its MEC1-dependent expression is delayed compared to the rapid induction of Rnr3p in response to HU treatment. Cell biology and subcellular fractionation experiments show localization of Hug1p-GFP to the cytoplasm upon HU treatment. The cytoplasmic localization of Hug1p-GFP is dependent on MEC1 pathway genes and coincides with the cytoplasmic localization of Rnr2p–Rnr4p. Taken together, the genetic interactions, gene expression, and localization studies support a novel role for Hug1p as a negative regulator of the MEC1 checkpoint response through its compartmentalization with Rnr2p–Rnr4p.  相似文献   

16.
Neural circuits in the medial entorhinal cortex (MEC) encode an animal’s position and orientation in space. Within the MEC spatial representations, including grid and directional firing fields, have a laminar and dorsoventral organization that corresponds to a similar topography of neuronal connectivity and cellular properties. Yet, in part due to the challenges of integrating anatomical data at the resolution of cortical layers and borders, we know little about the molecular components underlying this organization. To address this we develop a new computational pipeline for high-throughput analysis and comparison of in situ hybridization (ISH) images at laminar resolution. We apply this pipeline to ISH data for over 16,000 genes in the Allen Brain Atlas and validate our analysis with RNA sequencing of MEC tissue from adult mice. We find that differential gene expression delineates the borders of the MEC with neighboring brain structures and reveals its laminar and dorsoventral organization. We propose a new molecular basis for distinguishing the deep layers of the MEC and show that their similarity to corresponding layers of neocortex is greater than that of superficial layers. Our analysis identifies ion channel-, cell adhesion- and synapse-related genes as candidates for functional differentiation of MEC layers and for encoding of spatial information at different scales along the dorsoventral axis of the MEC. We also reveal laminar organization of genes related to disease pathology and suggest that a high metabolic demand predisposes layer II to neurodegenerative pathology. In principle, our computational pipeline can be applied to high-throughput analysis of many forms of neuroanatomical data. Our results support the hypothesis that differences in gene expression contribute to functional specialization of superficial layers of the MEC and dorsoventral organization of the scale of spatial representations.  相似文献   

17.
Isoprenoids are natural products that are all derived from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). These precursors are synthesized either by the mevalonate (MVA) pathway or the 1-Deoxy-D-Xylulose 5-Phosphate (DXP) pathway. Metabolic engineering of microbes has enabled overproduction of various isoprenoid products from the DXP pathway including lycopene, artemisinic acid, taxadiene and levopimaradiene. To date, there is no method to accurately measure all the DXP metabolic intermediates simultaneously so as to enable the identification of potential flux limiting steps. In this study, a solid phase extraction coupled with ultra performance liquid chromatography mass spectrometry (SPE UPLC-MS) method was developed. This method was used to measure the DXP intermediates in genetically engineered E. coli. Unexpectedly, methylerythritol cyclodiphosphate (MEC) was found to efflux when certain enzymes of the pathway were over-expressed, demonstrating the existence of a novel competing pathway branch in the DXP metabolism. Guided by these findings, ispG was overexpressed and was found to effectively reduce the efflux of MEC inside the cells, resulting in a significant increase in downstream isoprenoid production. This study demonstrated the necessity to quantify metabolites enabling the identification of a hitherto unrecognized pathway and provided useful insights into rational design in metabolic engineering.  相似文献   

18.
Subcellular fractions of trout (Salvelinus fontinalis) liver homogenate metabolized diphenyl ether mainly to the 4-hydroxy derivative, but with traces of other compounds, including the 3-hydroxy derivative and possibly the 4,4-dihydroxy derivative. An ultraviolet spectrophotometric method for the determination of 4-hydroxydiphenyl ether is described.  相似文献   

19.
The dioxepanofuranose derivatives 4 and 12, obtained through the cyclization of the 3-(2-hydroxyethyl) ether of a D-xylo-pentodialdose derivative, were appropriately functionalized and elaborated to the first examples of the new class of 3'-O and 5'-O-bicyclic nucleoside analogues 9, 10, and 14 with a fused seven-membered ring. Reactions carried out through the intermediacy of the D-xylo-pentodialdose derivative 5 yielded racemic products, while prior protection of the 4-formyl group (as in 7) before deprotection of the 1,2-hydroxyl groups led to optically active analogues.  相似文献   

20.
Tetracycline is a widely used broad spectrum antibiotic. A derivative of tetracycline was synthesized by methylation (-CH3) of the phenolic hydroxyl group, with the use of diazomethane (CH2N2). A methyl ether group is then formed from the reaction with diazomethane, which replaces the hydroxyl group. The newly formed derivative has reduced hydrogen bonding capability relative to the unmodified tetracycline. An infrared spectra shows the appearance of the ether group on the derivative and the Log P calculations indicate that the derivative has increased lipophilic tendency. The Lipophilic Substituent Constant calculated for the tetracycline derivative is 0.46, indicating a lipophilic substituent. The tetracycline derivative was soluble in aqueous solvents and was stable for more than five weeks when stored at < or = 0 degrees C. The derivative was placed in tissue culture utilizing Luria-Bertani (LB) media, at a concentration of 12.0 microg/mL and inhibited the growth of E. coli (XL-1 blue) from 15% to 20% within the initial sixteen hours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号