首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Rhodobacter sphaeroides grew in the presence of up to 43 μM chromate and reduced hexavalent chromium to the trivalent form under both aerobic and anaerobic conditions. Reduced chromium remained in the external medium. Reductase activity was present in cells of R. sphaeroides independent of whether chromate was present or not in the growth medium. The reducing activity was found in the cytoplasmic cell fraction and was dependent on NADH. The chromate-reducing enzyme was purified by anion exchange, hydroxyapatite and hydrophobic interaction chromatography, and gel filtration. The molecular weight of the enzyme was 42 kDa as determined by gel filtration. The optimum of the reaction is at pH 7.0 and 30°C. The enzyme activity showed a hyperbolic dependence on the concentrations of both substrates, NADH and chromate, with a maximum velocity at 0.15 mM NADH. A K m of 15±1.3 μM CrO4 2− and a V max of 420±50 μmol min−1 mg protein−1 was determined for the enzyme isolated from anaerobically grown cells and 29±6.4 μM CrO4 2− and 100±9.6 μmol CrO4 2− min−1 mg protein−1 for the one from aerobically grown ones. Journal of Industrial Microbiology & Biotechnology (2000) 25, 198–203. Received 05 January 2000/ Accepted in revised form 27 May 2000  相似文献   

3.
Chromium-resistant bacteria (CRB) isolated from soils can be used to reduce toxic Cr(VI) from contaminated environments. This study assessed in vitro reduction of hexavalent Cr using a cell-free extract (CFE) of CRB isolated from soil contaminated with dichromate. One isolate, ES 29, that substantially reduced Cr(VI) was identified as a Bacillus species by 16S rRNA gene-sequence homology. The isolate reduced Cr(VI) under aerobic conditions, using NADH as an electron donor and produced a soluble Cr(VI)-reducing enzyme stimulated by copper (Cu2+). The CFE of the bacterial isolate reduced 50% of Cr(VI) in 6 h. The Cr(VI)-reduction activity of the CFE had a Km of 7.09 microM and a Vmax of 0.171 micromol min(-1) mg(-1) protein. Mercury inhibited the enzyme, but not competitively, with a Vmax of 0.143 micromol min(-1) mg(-1) protein, a Km of 7.07 microM and a Ki of 1.58 microM. This study characterizes the enzymatic reduction of Cr(VI) by Bacillus sp. ES 29 which can be used for the bioremediation of chromate.  相似文献   

4.
Chromate reduction by immobilized palladized sulfate-reducing bacteria   总被引:1,自引:0,他引:1  
Resting cells of Desulfovibrio vulgaris NCIMB 8303 and Desulfovibrio desulfuricans NCIMB 8307 were used for the hydrogenase-mediated reduction of Pd(II) to Pd(0). The resulting hybrid palladium bionanocatalyst (Bio-Pd(0)) was used in the reduction of Cr(VI) to the less environmentally problematic Cr(III) species. The reduction of Cr(VI) by free and agar-immobilized Bio-Pd(0) was evaluated. Investigations using catalyst suspensions showed that Cr(VI) reduction was similar ( approximately 170 nmol Cr(VI)/h/mg Bio-Pd(0)) when Bio-Pd(0) was produced using D. vulgaris or D. desulfuricans. Continuous-flow studies using D. vulgaris Bio-Pd(0) with agar as the immobilization matrix investigated the effect of Bio-Pd(0) loading, inlet Cr(VI) concentration, and flow rate on the efficiency of Cr(VI) reduction. Reduction of Cr(VI) was highest at a D. vulgaris Bio-Pd(0) loading of 7.5 mg Bio-Pd(0)/mL agar (3:1 dry cell wt: Pd(0)), an input [Cr(VI)] of 100 microM, and a flow rate of 1.75 mL/h (approx. 3.5 column volumes/h). A mathematical interpretation predicted the activity of the immobilized Bio-Pd(0) for a given set of conditions within 5% of the value found by experiment. Considering the system as an 'artificial enzyme' analog and application of applied enzyme kinetics gave an apparent K(m) value (K(m app)) of 430 microM Cr(VI) and a determined value of flow-through reactor activity which differed by 11% from that predicted mathematically.  相似文献   

5.
Chromate reduction by rabbit liver aldehyde oxidase   总被引:2,自引:0,他引:2  
Chromate was reduced during the oxidation of 1-methylnicotinamide chloride by partially purified rabbit liver aldehyde oxidase. In addition to 1-methylnicotinamide, several other electron donor substrates for aldehyde oxidase were able to support the enzymatic chromate reduction. The reduction required the presence of both enzyme and the electron donor substrate. The rate of the chromate reduction was retarded by inhibitors of aldehyde oxidase but was not affected by substrates or inhibitors of xanthine oxidase. These results are consistent with the involvement of aldehyde oxidase in the reduction of chromate by rabbit liver cytosolic enzyme preparations.  相似文献   

6.
7.
Strains of Bacillus cereus can produce a heat-stable toxin (cereulide). In this study, 101 Bacillus strains representing 7 Bacillus species were tested for production of heat-stable toxins. Strains of B. megaterium, B. firmus and B. simplex were found to produce novel heat-stable toxins, which showed varying levels of toxicity. B. cereus strains (18 out of 54) were positive for toxin production. Thirteen were of serovar H1, and it was of interest that some were of clinical origin. Two were of serovars 17B and 20, which are not usually implicated in the emetic syndrome. Partial purification of the novel B. megaterium, B. simplex and B. firmus toxins showed they had similar physical characteristics to the B. cereus emetic toxin, cereulide.  相似文献   

8.
Summary A bacterium belonging to the Bacillus firmus/lentus-complex and capable of growth on native potato starch was isolated from sludge of a pilot plant unit for potato-starch production. Utilization of a crude enzyme preparation obtained from the culture fluid after growth of the microorganism on native starch, resulted in complete degradation of native starch granules from potato, maize and wheat at a temperature of 37°C. Glucose was found as a major product. Production of maltose, maltotriose and maltotetraose was also observed. Native-starch-degrading activity (NSDA) could be selectively adsorbed on potato-starch granules, whereas soluble-starch-degrading activity (SSDA) remained mainly in solution. The use of such a starch-adsorbed enzyme preparation on native starch resulted in a completely changed product pattern. An increase in oligosaccharides concomitant with less glucose formation was observed. An increased conversion of soluble starch to maltopentaose was possible with this starch-adsorbed enzyme preparation. It is concluded that NSDA comes from -amylase(s) and SSDA from glucoamylase(s) and/or -glucosidase(s). Cultivation of B. firmus/lentus on glucose, maltose, or soluble starch resulted in substantially smaller quantities of (native) starch-degrading activity.Offprint requests to: D. J. Wijbenga  相似文献   

9.
《Process Biochemistry》2007,42(6):1028-1032
Chromate reduction was carried out by resting cells of Achromobacter sp. Ch-1 with lactate as electron donor under aerobic conditions. The reduction activity of the samples supplemented with lactate was two times as those without lactate. The reduction rate was influenced by initial pH and lactate concentration. Under the optimal conditions, pH 9.0 and 4000 mg l−1 lactate supplement, reduction rate was 5.45 mg l−1 min−1. The reduction rate decreased with increasing of Cr(VI) concentrations and increased with cell densities proportionally. The maximum reduction limit of Ch-1 cells was obtained at 2107 mg l−1 of Cr(VI).  相似文献   

10.
A polyvinyl alcohol-based immobilisation technique has been utilised for entrapping the newly-isolated chromate-reducing bacterium, Microbacterium liquefaciens MP30. Three immobilisation methods were evaluated: PVA-nitrate, PVA-borate and PVA-alginate. Chromate reduction was studied in batch and continuous-flow bioreactors, where the beads maintained integrity during continuous operation. PVA-borate and PVA-alginate cell beads showed a higher rate and extent of chromate reduction than PVA-nitrate cell beads in batch experiments. With the former 100 M Cr(VI) was removed within 4 days, while only 40 M Cr(VI) was removed using the latter, and with no increase in Cr(VI) removal subsequently. Cell activity was maintained during immobilisation but the rate of Cr(VI) removal by immobilised cells was only half that of an equivalent mass of free cells. Using PVA-alginate cell beads in a continuous-flow system, chromate removal was maintained at 90–95% from a 50 M solution over 20 days without signs of bead breakdown.  相似文献   

11.
A strain of Bacillus firmus (designated strain KC) isolated from a boron (B) mine in California exhibited extreme tolerance to B, provided it was first acclimated at intermediate B supply concentrations. Strain KC tolerated up to 1000 mmol/L B (boric acid-B) and 1800 mmol/L B (sodium tetraborate-B), and attained the greatest growth (as measured by absorbance) at 300 mmol/L B. Despite its extreme tolerance to high B, there was no evidence that it was able to remove significant quantities of B from the growth media, suggesting that strain KC is not likely to be useful for the removal of B from wastewaters in an engineered bioreactor.  相似文献   

12.
13.
14.
Budman J  Chu G 《The EMBO journal》2005,24(4):849-860
In mammalian cells, nonhomologous end-joining (NHEJ) repairs DNA double-strand breaks created by ionizing radiation and V(D)J recombination. We have developed a cell-free system capable of processing and joining noncompatible DNA ends. The system had key features of NHEJ in vivo, including dependence on Ku, DNA-PKcs, and XRCC4/Ligase4. The NHEJ reaction had striking properties. Processing of noncompatible ends involved polymerase and nuclease activities that often stabilized the alignment of opposing ends by base pairing. To achieve this, polymerase activity efficiently synthesized DNA across discontinuities in the template strand, and nuclease activity removed a limited number of nucleotides back to regions of microhomology. Processing was suppressed for DNA ends that could be ligated directly, biasing the reaction to preserve DNA sequence and maintain genomic integrity. DNA sequence internal to the ends influenced the spectrum of processing events for noncompatible ends. Furthermore, internal DNA sequence strongly influenced joining efficiency, even in the absence of processing. These results support a model in which DNA-PKcs plays a central role in regulating the processing of ends for NHEJ.  相似文献   

15.
16.
An extracellular nuclease from Bacillus firmus VKPACU-1 was multifunctional enzyme, this nuclease hydrolyzed poly U rapidly and more preferentially than the other homopolyribonucleotides. Hydrolysis of RNA this enzyme released mononucleotides in the order 5'UMP > 5'AMP > 5'GMP where as in hydrolysis of DNA the mononucleotides in the order of 5'dAMP > 5'dGMP > 5'dTMP and oligonucleotides. Uridylic linkages in RNA and adenylic linkages in DNA were preferentially cleaved by the nuclease. Nuclease produced oligonucleotides having only 3' hydroxyl and 5' phosphate termini. Present nuclease hydrolyzed RNA and DNA released oligonucleotides as major end products and mononucleotides, suggesting an endo mode of action.  相似文献   

17.
At the optimal pH for growth (pH 10.5), alkalophilic Bacillus firmus RAB, an obligate aerobe, exhibits normal rates of oxidative phosphorylation despite the low transmembrane proton electrochemical gradient, about -60 mV (delta psi = -180 mV and delta pH = +120 mV). This bioenergetic problem might be resolved by use of an Na+ coupled ATP synthase; otherwise an F1F0-ATPase must be able to utilize low driving forces in this organism. The ATPase activity was extracted from everted membrane vesicles by low ionic strength treatment and purified to homogeneity by hydrophobic interaction chromatography and sucrose density gradient centrifugation. The ATPase preparation had the characteristic F1-ATPase subunit structure, with Mr values of 51,500 (alpha), 48,900 (beta), 34,400 (gamma), 23,300 (delta), and 14,500 (epsilon); the identity of the alpha and beta subunits was confirmed by immunoblotting with anti-beta of Escherichia coli and anti-B. firmus RAB F1. Methanol and octyl glucoside, agents that stimulated the low basal membrane ATPase activity 10- to 12-fold, dramatically elevated the MgATPase activity of the purified F1, more than 150-fold, to 50 mumol min-1 mg protein-1. Anti-F1 inhibited membrane ATPase activity greater than or equal to 80%. The membranes exhibited no Na+-stimulated or vanadate-sensitive ATPase activity when prepared in the absence or presence of Na+ or ATP. These findings, which are consistent with previous studies, establish that in alkalophilic bacteria, ATP hydrolysis, and presumably ATP synthesis is catalyzed by an F1F0-ATPase rather than a Na+ ATPase.  相似文献   

18.
淀粉水解酶广泛用于淀粉加工业中,何秉旺等在选育产耐热β-淀粉酶菌株中得到一株坚强芽孢杆菌(Bacillusfirmus)725,该菌株产生的淀粉酶有较好的热稳定性,水解淀粉的主要产物为麦芽糖。自然菌株产生的淀粉酶往往是多种淀粉酶的混合,为进一步研究该菌株产生的淀粉酶的性质和在工业上应用的可能性,分离了三个淀粉酶基因,在大肠杆菌中克隆和表达[1]。其中重组质粒pBA150产生的淀粉酶的淀粉水解产物主要是麦芽糖[1]。β-淀粉酶(EC.3.2.1.2)水解淀粉的主要产物是麦芽糖,工业上可用于生产高麦芽糖浆,近年来又有β-淀粉酶用于啤酒工业的报道[2]。本文报道重组质粒pBA150的β-淀粉酶基因的序列分析及推导出的氨基酸序列同己知β-淀粉酶的氨基酸序列比较。  相似文献   

19.
20.
With a view toward verifying the original classification of alkaliphilic Bacillus firmus OF4, physiological and biochemical characteristics were more extensively catalogued than in original studies, and this catalog was supplemented with 16S rDNA sequence homology and more extensive DNA–DNA hybridization analyses. Phylogenetic analysis of this alkaliphile based on the comparison of multiple 16S rDNA sequences from Bacillus species indicated that this strain is most closely related to Bacillus pseudofirmus. Consistently, in the DNA–DNA hybridization analysis of the alkaliphile and Bacillus reference strains, the highest level of DNA–DNA relatedness (96%) was found between the alkaliphile and the B. pseudofirmus type strain (DSM 8715T). The findings support the conclusion that this alkaliphile strain is more closely related to B. pseudofirmus than to B. firmus, and we propose the future use of the designation B. pseudofirmus OF4. Received: April 20, 1999 / Accepted: August 31, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号