首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of indolizinoquinoline-5,12-dione derivatives (IQDs) are synthesized and evaluated for their cytotoxic activities toward human lung adenocarcinoma (GLC-82), large-cell lung carcinoma (NCI-H460), promyelocytic leukemia (HL-60) and breast carcinoma (MCF-7) cells by MTT method. Most of the IQDs show significant cytotoxic potency. In addition, the evaluation of structure-activity relationships indicated that the incorporation of electron-withdrawing substituents at the C or D ring will enhance the activities of the target compounds distinctly. The topoisomerase I inhibitory activity is also measured.  相似文献   

2.
Indoleamine 2,3-dioxygenase 1 (IDO1) is regarded as a promising target for cancer immunotherapy. Many naphthoquinone derivatives have been reported as IDO1 inhibitors so far. Herein, two series of naphthoquinone derivatives, naphthoindolizine and indolizinoquinoline-5,12-dione derivatives, were synthesized and evaluated for their IDO1 inhibitory activity. Most of the target compounds showed significant inhibition potency and high selectivity for IDO1 over tryptophan 2,3-dioxygenase (TDO). The structure-activity relationship was also summarized. The most potent compounds 5c (IC50 23?nM, IDO1 enzyme), and 5b′ (IC50 372?nM, HeLa cell) were identified as promising lead compounds.  相似文献   

3.
DNA topoisomerases are nuclear enzymes that are the targets for several anticancer drugs. In this study we investigated the antiproliferative activity against human leukaemia cell lines and the effects on topoisomerase I and II of evodiamine, which is a quinazolinocarboline alkaloid isolated from the fruit of a traditional Chinese medicinal plant, Evodia rutaecarpa. We report here the anti-proliferative activity against human leukaemia cells K562, THP-1, CCRF-CEM and CCRF-CEM/C1 and the inhibitory mechanism on human topoisomerases I and II, important anti-cancer drugs targets, of evodiamine. Evodiamine failed to trap [Topo-DNA] complexes and induce any detectable DNA damage in cells, was unable to bind or intercalate DNA, and arrested cells in the G(2)/M phase. The results suggest evodiamine is a dual catalytic inhibitor of topoisomerases I and II, with IC(50) of 60.74 and 78.81 μM, respectively. The improved toxicity towards camptothecin resistant cells further supports its inhibitory mechanism which is different from camptothecin, and its therapeutic potential.  相似文献   

4.
Topoisomerase II (Top2) activity involves an intermediate in which the topoisomerase is covalently bound to a DNA double-strand break via a 5'-phosphotyrosyl bond. Although these intermediates are normally transient, they can be stabilized by antitumor agents that act as Top2 "poisons," resulting in the induction of cytotoxic double-strand breaks, and they are implicated in the formation of site-specific translocations that are commonly associated with cancer. Recently, we revealed that TRAF and TNF receptor-associated protein (TTRAP) is a 5'-tyrosyl DNA phosphodiesterase (5'-TDP) that can cleave 5'-phosphotyrosyl bonds, and we denoted this protein tyrosyl DNA phosphodiesterase-2 (TDP2). Here, we have generated TDP2-deleted DT40 cells, and we show that TDP2 is the major if not the only 5'-TDP activity present in vertebrate cells. We also show that TDP2-deleted DT40 cells are highly sensitive to the anticancer Top2 poison, etoposide, but are not hypersensitive to the Top1 poison camptothecin or the DNA-alkyating agent methyl methanesulfonate. These data identify an important mechanism for resistance to Top2-induced chromosome breakage and raise the possibility that TDP2 is a significant factor in cancer development and treatment.  相似文献   

5.
目的:研究去泛素化酶USP13对人慢性髓系白血病细胞系K562增殖和凋亡的影响,并进行初步的机制探究。方法:构建pLKO.1-shUSP13-GFP慢病毒干涉载体,慢病毒包装后感染并建立稳定敲低USP13的K562细胞株。免疫印迹检测K562细胞中USP13蛋白的敲低效率。流式细胞术分析敲低USP13对K562细胞增殖和凋亡的影响。免疫共沉淀和蛋白质泛素化实验探究USP13调控K562细胞的分子机制。结果:成功构建pLKO.1-shUSP13-GFP慢病毒干涉载体,同时利用慢病毒体系获得稳定敲低USP13的K562细胞株。流式细胞术结果显示,敲低USP13促进K562细胞凋亡、抑制细胞增殖。分子机制研究发现,敲低USP13通过增强c-Myc泛素化进而导致其蛋白质水平降低。结论:初步揭示了USP13调控K562细胞增殖和凋亡的分子机制,为治疗慢性髓系白血病提供了潜在的靶点。  相似文献   

6.
7.
Deoxyribonucleic acid (DNA) topoisomerases are essential for removing the supercoiling that normally builds up ahead of replication forks. The camptothecin (CPT) Top1 (topoisomerase I) inhibitors exert their anticancer activity by reversibly trapping Top1-DNA cleavage complexes (Top1cc's) and inducing replication-associated DNA double-strand breaks (DSBs). In this paper, we propose a new mechanism by which cells avoid Top1-induced replication-dependent DNA damage. We show that the structure-specific endonuclease Mus81-Eme1 is responsible for generating DSBs in response to Top1 inhibition and for allowing cell survival. We provide evidence that Mus81 cleaves replication forks rather than excises Top1cc's. DNA combing demonstrated that Mus81 also allows efficient replication fork progression after CPT treatment. We propose that Mus81 cleaves stalled replication forks, which allows dissipation of the excessive supercoiling resulting from Top1 inhibition, spontaneous reversal of Top1cc, and replication fork progression.  相似文献   

8.
9.
Summary The ability of monocytes from patients with gastrointestinal cancer to inhibit tumour cell growth and suppress PHA-induced lymphocyte response in vitro was assessed. Isolated monocytes, i.e., adherent Fc+ cells from mononuclear cell suspension, were cytostatic but not cytolytic for both K562 line and L1210 lymphoma cells. Monocytes from the patients showed an increased ability to inhibit the growth of L1210 but not K562 line cells. The increased cytostatic activity of monocytes was associated with their suppressor activity. This suggests that suppressor monocytes are also able to arrest tumour cell growth in vitro.  相似文献   

10.
Although the hydroxyurea (HU) has been extensively studied, little is known of its molecular mechanism in controlling the expression of human globin gene and in modulating the progression of cell-cycle in K 562 cell. In the present study, the effect of hydroxyurea on proliferative kinetics of K 562 cells was examined by monitoring the number of cells during a period of 8 day's cell culture. Our results showed that there was a dose related decrease in cell growth when K562 cells were incubated with HU. Moreover, cell-cycle analysis demonstrated that HU had profound effect on cell-cycle distribution. In the case of the induced K 562 cells, there was an increased accumulation of cells in S phase and a decreased fraction of cells in G 1 and G 2 + M phase. Furthermore, HU could induce the expression of human beta-globin gene in the induced K 562 cells. Our results indicate that HU has a potential to inhibit the proliferation of K 562 cells and to stimulate the terminal differentiation of this cell.  相似文献   

11.
Low concentrations of camptothecin induced differentiation of human and mouse myeloid leukemia cells including human HL60, U937, ML1, and K562 cells and mouse M1 cells as measured by various differentiation-associated properties. When K562 cells were pretreated with 20 nM camptothecin for 2 h, 53% of the cells were induced to differentiate as measured by NBT staining. Significant single strand breaks in DNA of K562 cells were caused by this treatment. Most single strand breaks were accompanied by protein-DNA cross linking. The combination of camptothecin and rTNF synergistically induced differentiation of human ML1, U937, and M1 cells. These results suggest that topo I may be important in some differentiation of myeloid leukemia cells.  相似文献   

12.
DNA topoisomerase I (Top1p) catalyzes topological changes in DNA and is the cellular target of the antitumor agent camptothecin (CPT). Non-CPT drugs that target Top1p, such as indolocarbazoles, are under clinical development. However, whether the cytotoxicity of indolocarbazoles derives from Top1p poisoning remains unclear. To further investigate indolocarbazole mechanism, rebeccamycin R-3 activity was examined in vitro and in yeast. Using a series of Top1p mutants, where substitution of residues around the active site tyrosine has well-defined effects on enzyme catalysis, we show that catalytically active, CPT-resistant enzymes remain sensitive to R-3. This indolocarbazole did not inhibit yeast Top1p activity, yet was effective in stabilizing Top1p-DNA complexes. Similar results were obtained with human Top1p, when Ser or His were substituted for Asn-722. The mutations altered enzyme function and sensitivity to CPT, yet R-3 poisoning of Top1p was unaffected. Moreover, top1delta, rad52delta yeast cells expressing human Top1p, but not catalytically inactive Top1Y723Fp, were sensitive to R-3. These data support hTop1p as the cellular target of R-3 and indicate that distinct drug-enzyme interactions at the active site are required for efficient poisoning by R-3 or CPT. Furthermore, resistance to one poison may potentiate cell sensitivity to structurally distinct compounds that also target Top1p.  相似文献   

13.
CFS-1686 (chemical name (E)-N-(2-(diethylamino)ethyl)-4-(2-(2-(5-nitrofuran-2-yl)vinyl)quinolin-4-ylamino)benzamide) inhibits cell proliferation and triggers late apoptosis in prostate cancer cell lines. Comparing the effect of CFS-1686 on cell cycle progression with the topoisomerase 1 inhibitor camptothecin revealed that CFS-1686 and camptothecin reduced DNA synthesis in S-phase, resulting in cell cycle arrest at the intra-S phase and G1-S boundary, respectively. The DNA damage in CFS-1686 and camptothecin treated cells was evaluated by the level of ATM phosphorylation, γH2AX, and γH2AX foci, showing that camptothecin was more effective than CFS-1686. However, despite its lower DNA damage capacity, CFS-1686 demonstrated 4-fold higher inhibition of topoisomerase 1 than camptothecin in a DNA relaxation assay. Unlike camptothecin, CFS-1686 demonstrated no activity on topoisomerase 1 in a DNA cleavage assay, but nevertheless it reduced the camptothecin-induced DNA cleavage of topoisomerase 1 in a dose-dependent manner. Our results indicate that CFS-1686 might bind to topoisomerase 1 to inhibit this enzyme from interacting with DNA relaxation activity, unlike campothecin''s induction of a topoisomerase 1-DNA cleavage complex. Finally, we used a computer docking strategy to localize the potential binding site of CFS-1686 to topoisomerase 1, further indicating that CFS-1686 might inhibit the binding of Top1 to DNA.  相似文献   

14.
Eleven derivatives (5-13, 15, and 16) of an immunosuppressive and cytotoxic tricyclic terpenoid, brasilicardin A (1), were prepared and assayed for inhibitory effects to the mouse mixed lymphocyte reaction (MLR) and seven human tumor cell lines. The 17N-methyl form (8) of 1 showed the most potent immunosuppressive activity in mouse MLR, while induction of more bulky group for N-17 resulted in significant decrease of the activity. Compound 8 also showed potent cytotoxic activity against DLD-1, Lu-65, A549, K562, and MOLT-4 cells, while the benzyl ester (13) of 1 exhibited potent cytotoxicity against K562, MOLT-4, and jarkat leukemia cell lines. The 17N-acetyl derivative (11) of 1 selectively inhibited the cell growth of DLD-1 cells. The methyl ester (5) of 1 showed potent cytotoxic activity against K562, MOLT-4, and Ball-1 cell lines, the last of which was resistant to 1, 8, and 13.  相似文献   

15.
Natural killer (NK) cells target and kill tumor cells by direct anti-tumor cytotoxicity. NK lytic-associated molecule (NKLAM) is a protein involved in this cytolytic function. Acting as an E3 ubiquitin ligase, NKLAM binds to and ubiquitinates a novel protein, uridine-cytidine kinase like-1 (UCKL-1), targeting it for degradation. However, UCKL-1’s function in tumor cell survival and NK cell cytotoxicity is unknown. UCKL-1’s homology to uridine kinases and over expression in tumor cells suggests a role for UCKL-1 in tumor growth and/or survival. We propose that NKLAM and UCKL-1 interact in the tumor cell, where degradation of UCKL-1 leads to increased tumor cell apoptosis. Here we use RNA interference to downregulate UCKL-1 expression in K562 erythroleukemia cells. It was seen that downregulation of UCKL-1 initiated apoptosis and slowed the cell cycle, resulting in lower growth in the small interfering UCKL-1 RNA treated K562 cell culture. In addition, the chemotherapeutic agent staurosporine was seen to be more effective in inducing cell death by apoptosis in UCKL-1 depleted K562 cells compared with controls. We also found that UCKL-1 depleted K562 cells were more susceptible to NK mediated cytolysis than controls. These results indicate a role for UCKL-1 in tumor cell survival and suggest possible therapeutic potential of UCKL-1 inhibitors in cancer treatment.  相似文献   

16.
Changes in the level of calcium-activated neutral proteases (calpains) in K562 cells induced to differentiate by phorbol 12-myristate 13-acetate (PMA) were examined by an immunohistochemical technique and Western blot analysis. A remarkable increase in m-calpain (high-Ca(2+)-requiring form) level was detected after PMA-treatment, while there was no significant difference in mu-calpain (low-Ca(2+)-requiring form) level between PMA-treated and untreated K562 cells. To confirm whether the increase in m-calpain is specific to PMA-induced differentiation, we examined changes in calpain in K562 cells cultured in serum-free medium and in synchronized cells. The results indicate that the increase has no relation to growth arrest or to cell cycle. PMA-treated cells exhibited increased nonspecific esterase activity, suggesting monocytic differentiation. Immunoelectron microscopic study showed the reactions of dense deposits with monoclonal anti-m-calpain antibody on cell membranes, on membranes of coated vesicles, and on rough endoplasmic reticulum of K562 cells after 26 h of PMA treatment.  相似文献   

17.
Mechanisms of drug-resistance in two K562 cell lines selected for adriamycin and etoposide resistance (K562-ADR and K562-VP16, respectively) were studied. In K562-ADR cells, overexpression of mdr 1 gene and two-fold reduction of topoisomerase II alpha mRNA content were found, while topoisomerase II beta expression remained unchanged, compared to the parental cell line. Antiapoptotic bcl-2 mRNA level was four-fold decreased in K562-ADR cells, while the expression of other members of bcl-2 family was unaffected. In K562-VP16 cells five-fold reduction of topoisomerase II alpha expression was found with the absence of mdr 1 gene overexpression. The expression of antiapoptotic bcl-2 and proapoptotic bax genes was reduced in K562-VP16 cell line, while the content of bcl-2 mRNA was increased. Cytogenetic analysis of K562-VP16 cells revealed morphological changes in their cell karyotype and susceptibility of these cells to spontaneous polyploidization. Possible effects of etoposite on mitotic control in K562-VP16 cells are discussed.  相似文献   

18.
19.
20.
Bae DS  Hwang YK  Lee JK 《Cellular immunology》2012,276(1-2):122-127
In this study, we investigate the relationship between natural killer (NK) cell susceptibility and the surface markers of cancer cells. Through phenotypic analysis, we found evidence that more susceptible cancer cell lines (K562 and Jurkat) express more NKG2D ligands. Major histocompatibility complex (MHC) class I chain-related A/B (MIC-A/B) and UL16 binding protein (ULBP) 1-5 molecules are typical ligands of NKG2D. The high killing activity of NK cells against K562 was abolished through the addition of a NKG2D blocking antibody. Upon in vitro stimulation with quercetin, low susceptible cancer cells increased NKG2D ligand expression, leading to enhancement of NK cell cytolytic activity. These results suggested that the anti-cancer activity of NK cells is not dependent on the origin and growth style of the target cells, but is dependent on the surface markers of the target cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号