首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Ingavirin was shown to be efficient in inhibition of the pandemic influenza virus strains A/California/04/2009 (H1N1)v, A/California/07/2009 (H1N1)v, A/Moscow/225/2009 (H1N1)v and A/Moscow/226/2009 (H1N1)v. as well as the influenza virus strain A/Aichi/2/68 (H3N2) in the lungs of the infected mice. After oral administration of Ingavirin the titers of the influenza virus strains in the lung homogenates lowered.  相似文献   

2.
High in vitro and in vivo efficacy of Ingavirin against the Mexican pandemic influenza virus A/H1N1/2009, strains A/California/04/2009 (H1N1) and A/California/07/2009 (H1N1) vs. the reference drug Arbidol was studied and verified when used therapeutically and prophylactically.  相似文献   

3.
The influenza virus H1N1 pandemic of 1918 was one of the worst medical catastrophes in human history. Recent studies have demonstrated that the hemagglutinin (HA) protein of the 1918 virus and 2009 H1N1 pandemic virus [A(H1N1)pdm09], the latter now a component of the seasonal trivalent inactivated influenza vaccine (TIV), share cross-reactive antigenic determinants. In this study, we demonstrate that immunization with the 2010-2011 seasonal TIV induces neutralizing antibodies that cross-react with the reconstructed 1918 pandemic virus in ferrets. TIV-immunized ferrets subsequently challenged with the 1918 virus displayed significant reductions in fever, weight loss, and virus shedding compared to these parameters in nonimmune control ferrets. Seasonal TIV was also effective in protecting against the lung infection and severe lung pathology associated with 1918 virus infection. Our data demonstrate that prior immunization with contemporary TIV provides cross-protection against the 1918 virus in ferrets. These findings suggest that exposure to A(H1N1)pdm09 through immunization may provide protection against the reconstructed 1918 virus which, as a select agent, is considered to pose both biosafety and biosecurity threats.  相似文献   

4.
Influenza viruses are respiratory pathogens that continue to pose a significantly high risk of morbidity and mortality of humans worldwide. Vaccination is one of the most effective strategies for minimizing damages by influenza outbreaks. In addition, rapid development and production of efficient vaccine with convenient administration is required in case of influenza pandemic. In this study, we generated recombinant influenza virus hemagglutinin protein 1 (sHA1) of 2009 pandemic influenza virus as a vaccine candidate using a well-established bacterial expression system and administered it into mice via sublingual (s.l.) route. We found that s.l. immunization with the recombinant sHA1 plus cholera toxin (CT) induced mucosal antibodies as well as systemic antibodies including neutralizing Abs and provided complete protection against infection with pandemic influenza virus A/CA/04/09 (H1N1) in mice. Indeed, the protection efficacy was comparable with that induced by intramuscular (i.m.) immunization route utilized as general administration route of influenza vaccine. These results suggest that s.l. vaccination with the recombinant non-glycosylated HA1 protein offers an alternative strategy to control influenza outbreaks including pandemics.  相似文献   

5.
Fatal human respiratory disease associated with the 1918 pandemic influenza virus and potentially pandemic H5N1 viruses is characterized by severe lung pathology, including pulmonary edema and extensive inflammatory infiltrate. Here, we quantified the cellular immune response to infection in the mouse lung by flow cytometry and demonstrate that mice infected with highly pathogenic (HP) H1N1 and H5N1 influenza viruses exhibit significantly high numbers of macrophages and neutrophils in the lungs compared to mice infected with low pathogenic (LP) viruses. Mice infected with the 1918 pandemic virus and a recent H5N1 human isolate show considerable similarities in overall lung cellularity, lung immune cell sub-population composition, and cellular immune temporal dynamics. Interestingly, while these similarities were observed, the HP H5N1 virus consistently elicited significantly higher levels of pro-inflammatory cytokines in whole lungs and primary human macrophages, revealing a potentially critical difference in the pathogenesis of H5N1 infections. Primary mouse and human macrophages and dendritic cells were also susceptible to 1918 and H5N1 influenza virus infection in vitro. These results together indicate that infection with HP influenza viruses such as H5N1 and the 1918 pandemic virus leads to a rapid cell recruitment of macrophages and neutrophils into the lungs, suggesting that these cells play a role in acute lung inflammation associated with HP influenza virus infection.  相似文献   

6.
Serum antibodies induced by seasonal influenza or seasonal influenza vaccination exhibit limited or no cross-reactivity against the 2009 pandemic swine-origin influenza virus of the H1N1 subtype (pH1N1). Ferrets immunized once or twice with MF59-adjuvanted seasonal influenza vaccine exhibited significantly reduced lung virus titers but no substantial clinical protection against pH1N1-associated disease. However, priming with MF59-adjuvanted seasonal influenza vaccine significantly increased the efficacy of a pandemic MF59-adjuvanted influenza vaccine against pH1N1 challenge. Elucidating the mechanism involved in this priming principle will contribute to our understanding of vaccine- and infection-induced correlates of protection. Furthermore, a practical consequence of these findings is that during an emerging pandemic, the implementation of a priming strategy with an available adjuvanted seasonal vaccine to precede the eventual pandemic vaccination campaign may be useful and life-saving.  相似文献   

7.
Genetic mutation and reassortment of influenza virus gene segments, in particular those of hemagglutinin (HA) and neuraminidase (NA), that lead to antigenic drift and shift are the major strategies for influenza virus to escape preexisting immunity. The most recent example of such phenomena is the first pandemic of H1N1 influenza of the 21st century, which started in 2009. Cross-reactive antibodies raised against H1N1 viruses circulating before 1930 show protective activity against the 2009 pandemic virus. Cross-reactive T-cell responses can also contribute to protection, but in vivo support of this view is lacking. To explore the protection mechanisms in vivo, we primed mice with H1 and H3 influenza virus isolates and rechallenged them with a virus derived from the 2009 H1N1 A/CA/04/09 virus, named CA/E3/09. We found that priming with influenza viruses of both H1 and H3 homo- and heterosubtypes protected against lethal CA/E3/09 virus challenge. Convalescent-phase sera from these primed mice conferred no neutralization activity in vitro and no protection in vivo. However, T-cell depletion studies suggested that both CD4 and CD8 T cells contributed to the protection. Taken together, these results indicate that cross-reactive T cells established after initial priming with distally related viruses can be a vital component for prevention of disease and control of pandemic H1N1 influenza virus infection. Our results highlight the importance of establishing cross-reactive T-cell responses for protecting against existing or newly emerging pandemic influenza viruses.  相似文献   

8.
Compared to seasonal influenza viruses, the 2009 pandemic H1N1 (pH1N1) virus caused greater morbidity and mortality in children and young adults. People over 60 years of age showed a higher prevalence of cross-reactive pH1N1 antibodies, suggesting that they were previously exposed to an influenza virus or vaccine that was antigenically related to the pH1N1 virus. To define the basis for this cross-reactivity, ferrets were infected with H1N1 viruses of variable antigenic distance that circulated during different decades from the 1930s (Alaska/35), 1940s (Fort Monmouth/47), 1950s (Fort Warren/50), and 1990s (New Caledonia/99) and challenged with 2009 pH1N1 virus 6 weeks later. Ferrets primed with the homologous CA/09 or New Jersey/76 (NJ/76) virus served as a positive control, while the negative control was an influenza B virus that should not cross-protect against influenza A virus infection. Significant protection against challenge virus replication in the respiratory tract was observed in ferrets primed with AK/35, FM/47, and NJ/76; FW/50-primed ferrets showed reduced protection, and NC/99-primed ferrets were not protected. The hemagglutinins (HAs) of AK/35, FM/47, and FW/50 differ in the presence of glycosylation sites. We found that the loss of protective efficacy observed with FW/50 was associated with the presence of a specific glycosylation site. Our results suggest that changes in the HA occurred between 1947 and 1950, such that prior infection could no longer protect against 2009 pH1N1 infection. This provides a mechanistic understanding of the nature of serological cross-protection observed in people over 60 years of age during the 2009 H1N1 pandemic.  相似文献   

9.
T cell epitopes have been found to be shared by circulating, seasonal influenza virus strains and the novel pandemic H1N1 influenza infection, but the ability of these common epitopes to provide cross-protection is unknown. We have now directly tested this by examining the ability of live seasonal influenza vaccine (FluMist) to mediate protection against swine-origin H1N1 influenza virus infection. Naive mice demonstrated considerable susceptibility to H1N1 Cal/04/09 infection, whereas FluMist-vaccinated mice had markedly decreased morbidity and mortality. In vivo depletion of CD4(+) or CD8(+) immune cells after vaccination indicated that protective immunity was primarily dependent upon FluMist-induced CD4(+) cells but not CD8(+) T cells. Passive protection studies revealed little role for serum or mucosal Abs in cross-protection. Although H1N1 influenza infection of naive mice induced intensive phagocyte recruitment, pulmonary innate defense against secondary pneumococcal infection was severely suppressed. This increased susceptibility to bacterial infection was correlated with augmented IFN-γ production produced during the recovery stage of H1N1 influenza infection, which was completely suppressed in mice previously immunized with FluMist. Furthermore, susceptibility to secondary bacterial infection was decreased in the absence of type II, but not type I, IFN signaling. Thus, seasonal FluMist treatment not only promoted resistance to pandemic H1N1 influenza infection but also restored innate immunity against complicating secondary bacterial infections.  相似文献   

10.
Infection with seasonal influenza viruses induces a certain extent of protective immunity against potentially pandemic viruses of novel subtypes, also known as heterosubtypic immunity. Here we demonstrate that infection with a recent influenza A/H3N2 virus strain induces robust protection in ferrets against infection with a highly pathogenic avian influenza virus of the H5N1 subtype. Prior H3N2 virus infection reduced H5N1 virus replication in the upper respiratory tract, as well as clinical signs, mortality, and histopathological changes associated with virus replication in the brain. This protective immunity correlated with the induction of T cells that cross-reacted with H5N1 viral antigen. We also demonstrated that prior vaccination against influenza A/H3N2 virus reduced the induction of heterosubtypic immunity otherwise induced by infection with the influenza A/H3N2 virus. The implications of these findings are discussed in the context of vaccination strategies and vaccine development aiming at the induction of immunity to pandemic influenza.  相似文献   

11.
Avian influenza is an infection caused by the H5N1 virus. The infection is highly contagious among birds, and only a few known cases of human avian influenza have been documented. However, healthcare experts around the world are concerned that mutation or genetic exchange with more commonly transmitted human influenza viruses could result in a pandemic of avian influenza. Their concern remains in spite of the fact that the first United States vaccine against the H5N1 virus was recently approved. Under these circumstances the fear is that a pandemic of avian influenza could result in the kind of mortality that was seen with the Spanish influenza pandemic of 1918–1919, where the number of deaths was estimated to be as high as 40 million people. Retrospective data gathered by the American Osteopathic Association shortly after the 1918–1919 influenza pandemic have suggested that osteopathic physicians (DOs), using their distinctive osteopathic manipulative treatment (OMT) methods, observed significantly lower morbidity and mortality among their patients as compared to those treated by allopathic physicians (MDs) with standard medical care available at the time. In light of the limited prevention and treatment options available, it seems logical that a preparedness plan for the treatment of avian influenza should include these OMT procedures, provided by DOs and other healthcare workers capable of being trained to perform these therapeutic interventions. The purpose of this paper is to discuss the characteristics of avian influenza, describe the success of DOs during the 1918–1919 Spanish influenza pandemic, describe the evidence base for the inclusion of OMT as part of the preparedness plan for the treatment of avian influenza, and describe some of the specific OMT procedures that could be utilized as part of the treatment protocol for avian influenza patients.  相似文献   

12.
Influenza A viral infections have been identified as the etiologic agents for historic pandemics, and contribute to the annual mortality associated with acute viral pneumonia. While both innate and acquired immunity are important in combating influenza virus infection, the mechanism connecting these arms of the immune system remains unknown. Recent data have indicated that the Notch system is an important bridge between antigen-presenting cells (APCs) and T cell communication circuits and plays a central role in driving the immune system to overcome disease. In the present study, we examine the role of Notch signaling during influenza H1N1 virus infection, focusing on APCs. We demonstrate here that macrophages, but not dendritic cells (DCs), increased Notch ligand Delta-like 1 (Dll1) expression following influenza virus challenge. Dll1 expression on macrophages was dependent on retinoic acid-inducible gene-I (RIG-I) induced type-I IFN pathway, and not on the TLR3-TRIF pathway. We also found that IFNα-Receptor knockout mice failed to induce Dll1 expression on lung macrophages and had enhanced mortality during influenza virus infection. Our results further showed that specific neutralization of Dll1 during influenza virus challenge induced higher mortality, impaired viral clearance, and decreased levels of IFN-γ. In addition, we blocked Notch signaling by using γ-secretase inhibitor (GSI), a Notch signaling inhibitor. Intranasal administration of GSI during influenza infection also led to higher mortality, and higher virus load with excessive inflammation and an impaired production of IFN-γ in lungs. Moreover, Dll1 expression on macrophages specifically regulates IFN-γ levels from CD4(+)and CD8(+)T cells, which are important for anti-viral immunity. Together, the results of this study show that Dll1 positively influences the development of anti-viral immunity, and may provide mechanistic approaches for modifying and controlling the immune response against influenza H1N1 virus infection.  相似文献   

13.
The experimental study of the Ingavirin efficacy against the influenza virus A (H5N1) on intranasally-infected albino mice vs. Tamiflue and Arbidol showed that when used for the prophylaxis, urgent prophylaxis and therapy it was effective in the protectiom of the animals from death. The efficient dose for the prophylaxis of the influenza infection was 5 mg/kg (protective efficacy of 46.7%) and for the urgent prophylaxis and therapy it was 15 mg/kg (protective efficacy of 40.0 and 35.0% respectively).  相似文献   

14.
In mouse models of influenza, T cells can confer broad protection against multiple viral subtypes when antibodies raised against a single subtype fail to do so. However, the role of T cells in protecting humans against influenza remains unclear. Here we employ a translational nonhuman primate model to show that cross-reactive T cell responses play an important role in early clearance of infection with 2009 pandemic H1N1 influenza virus (H1N1pdm). To "prime" cellular immunity, we first infected 5 rhesus macaques with a seasonal human H1N1 isolate. These animals made detectable cellular and antibody responses against the seasonal H1N1 isolate but had no neutralizing antibodies against H1N1pdm. Four months later, we challenged the 5 "primed" animals and 7 naive controls with H1N1pdm. In naive animals, CD8+ T cells with an activated phenotype (Ki-67+ CD38+) appeared in blood and lung 5-7 days post inoculation (p.i.) with H1N1pdm and reached peak magnitude 7-10 days p.i. In contrast, activated T cells were recruited to the lung as early as 2 days p.i. in "primed" animals, and reached peak frequencies in blood and lung 4-7 days p.i. Interferon (IFN)-γ Elispot and intracellular cytokine staining assays showed that the virus-specific response peaked earlier and reached a higher magnitude in "primed" animals than in naive animals. This response involved both CD4+ and CD8+ T cells. Strikingly, "primed" animals cleared H1N1pdm infection significantly earlier from the upper and lower respiratory tract than the naive animals did, and before the appearance of H1N1pdm-specific neutralizing antibodies. Together, our results suggest that cross-reactive T cell responses can mediate early clearance of an antigenically novel influenza virus in primates. Vaccines capable of inducing such cross-reactive T cells may help protect humans against severe disease caused by newly emerging pandemic influenza viruses.  相似文献   

15.
Innate immune response is important for viral clearance during influenza virus infection. Galectin-1, which belongs to S-type lectins, contains a conserved carbohydrate recognition domain that recognizes galactose-containing oligosaccharides. Since the envelope proteins of influenza virus are highly glycosylated, we studied the role of galectin-1 in influenza virus infection in vitro and in mice. We found that galectin-1 was upregulated in the lungs of mice during influenza virus infection. There was a positive correlation between galectin-1 levels and viral loads during the acute phase of viral infection. Cells treated with recombinant human galectin-1 generated lower viral yields after influenza virus infection. Galectin-1 could directly bind to the envelope glycoproteins of influenza A/WSN/33 virus and inhibit its hemagglutination activity and infectivity. It also bound to different subtypes of influenza A virus with micromolar dissociation constant (K(d)) values and protected cells against influenza virus-induced cell death. We used nanoparticle, surface plasmon resonance analysis and transmission electron microscopy to further demonstrate the direct binding of galectin-1 to influenza virus. More importantly, we show for the first time that intranasal treatment of galectin-1 could enhance survival of mice against lethal challenge with influenza virus by reducing viral load, inflammation, and apoptosis in the lung. Furthermore, galectin-1 knockout mice were more susceptible to influenza virus infection than wild-type mice. Collectively, our results indicate that galectin-1 has anti-influenza virus activity by binding to viral surface and inhibiting its infectivity. Thus, galectin-1 may be further explored as a novel therapeutic agent for influenza.  相似文献   

16.
Waterfowl represent the natural reservoir of all subtypes of influenza A viruses, including H5N1. Ducks are especially considered major contributors to the spread of H5N1 influenza A viruses because they exhibit diversity in morbidity and mortality. Therefore, as a preventive strategy against endemic as well as pandemic influenza, it is important to reduce the spread of H5N1 influenza A viruses in duck populations. Here, we describe the pathogenicity of dominant clades (clades 1 and 2) of H5N1 influenza A viruses circulating in birds in Asia. Four representatives of dominant clades of the viruses cause symptomatic infection but lead to different profiles of lethality in domestic ducks. We also demonstrate the efficacy, cross-protectiveness, and immunogenicity of three different inactivated oil emulsion whole-virus H5 influenza vaccines (derived by implementing reverse genetics) to the viruses in domestic ducks. A single dose of the vaccines containing 1 μg of hemagglutinin protein provides complete protection against a lethal A/Duck/Laos/25/06 (H5N1) influenza virus challenge, with no evidence of morbidity, mortality, or shedding of the challenge virus. Moreover, two of the three vaccines achieved complete cross-clade or cross-subclade protection against the heterologous avian influenza virus challenge. Interestingly, the vaccines induce low or undetectable titers of hemagglutination inhibition (HI), cross-HI, and/or virus neutralization antibodies. The mechanism of complete protection in the absence of detectable antibody responses remains an open question.  相似文献   

17.
Mice carrying a wild-type Mx1 gene (Mx1+/+) differ from standard laboratory mice (Mx1-/-) in being highly resistant to infection with common laboratory strains of influenza A virus. We report that Mx1 also protects mice against the pandemic human 1918 influenza virus and a highly lethal human H5N1 strain from Vietnam. Resistance to H5N1 of Mx1+/+ but not Mx1-/- mice was enhanced if the animals were treated with a single dose of exogenous alpha interferon before infection. Thus, the interferon-induced resistance factor Mx1 represents a key component of the murine innate immune system that mediates protection against epidemic and pandemic influenza viruses.  相似文献   

18.
There is worldwide concern that the avian influenza H5N1 virus, with a mortality rate of >50%, might cause the next influenza pandemic. Unlike most other influenza infections, H5N1 infection causes a systemic disease. The underlying mechanisms for this effect are still unclear. In this study, we investigate the interplay between avian influenza H5N1 and human dendritic cells (DC). We showed that H5N1 virus can infect and replicate in monocyte-derived and blood myeloid DC, leading to cell death. These results suggest that H5N1 escapes viral-specific immunity, and could disseminate via DC. In contrast, blood pDC were resistant to infection and produced high amounts of IFN-alpha. Addition of this cytokine to monocyte-derived DC or pretreatment with TLR ligands protected against infection and the cytopathic effects of H5N1 virus.  相似文献   

19.
We made an H1N1 vaccine candidate from a virus library consisting of 144 (?=?16 HA×9 NA) non-pathogenic influenza A viruses and examined its protective effects against a pandemic (2009) H1N1 strain using immunologically na?ve cynomolgus macaques to exclude preexisting immunity and to employ a preclinical study since preexisting immunity in humans previously vaccinated or infected with influenza virus might make comparison of vaccine efficacy difficult. Furthermore, macaques carrying a major histocompatibility complex class I molecule, Mafa-A1*052:02, were used to analyze peptide-specific CD8(+) T cell responses. Sera of macaques immunized with an inactivated whole particle formulation without addition of an adjuvant showed higher neutralization titers against the vaccine strain A/Hokkaido/2/1981 (H1N1) than did sera of macaques immunized with a split formulation. Neutralization activities against the pandemic strain A/Narita/1/2009 (H1N1) in sera of macaques immunized twice with the split vaccine reached levels similar to those in sera of macaques immunized once with the whole particle vaccine. After inoculation with the pandemic virus, the virus was detected in nasal samples of unvaccinated macaques for 6 days after infection and for 2.67 days and 5.33 days on average in macaques vaccinated with the whole particle vaccine and the split vaccine, respectively. After the challenge infection, recall neutralizing antibody responses against the pandemic virus and CD8(+) T cell responses specific for nucleoprotein peptide NP262-270 bound to Mafa-A1*052:02 in macaques vaccinated with the whole particle vaccine were observed more promptly or more vigorously than those in macaques vaccinated with the split vaccine. These findings demonstrated that the vaccine derived from our virus library was effective for pandemic virus infection in macaques and that the whole particle vaccine conferred more effective memory and broader cross-reactive immune responses to macaques against pandemic influenza virus infection than did the split vaccine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号