首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Modular organization of protein interaction networks   总被引:6,自引:0,他引:6  
MOTIVATION: Accumulating evidence suggests that biological systems are composed of interacting, separable, functional modules. Identifying these modules is essential to understand the organization of biological systems. RESULT: In this paper, we present a framework to identify modules within biological networks. In this approach, the concept of degree is extended from the single vertex to the sub-graph, and a formal definition of module in a network is used. A new agglomerative algorithm was developed to identify modules from the network by combining the new module definition with the relative edge order generated by the Girvan-Newman (G-N) algorithm. A JAVA program, MoNet, was developed to implement the algorithm. Applying MoNet to the yeast core protein interaction network from the database of interacting proteins (DIP) identified 86 simple modules with sizes larger than three proteins. The modules obtained are significantly enriched in proteins with related biological process Gene Ontology terms. A comparison between the MoNet modules and modules defined by Radicchi et al. (2004) indicates that MoNet modules show stronger co-clustering of related genes and are more robust to ties in betweenness values. Further, the MoNet output retains the adjacent relationships between modules and allows the construction of an interaction web of modules providing insight regarding the relationships between different functional modules. Thus, MoNet provides an objective approach to understand the organization and interactions of biological processes in cellular systems. AVAILABILITY: MoNet is available upon request from the authors.  相似文献   

4.
We model the evolution of eukaryotic protein-protein interaction (PPI) networks. In our model, PPI networks evolve by two known biological mechanisms: (1) Gene duplication, which is followed by rapid diversification of duplicate interactions. (2) Neofunctionalization, in which a mutation leads to a new interaction with some other protein. Since many interactions are due to simple surface compatibility, we hypothesize there is an increased likelihood of interacting with other proteins in the target protein's neighborhood. We find good agreement of the model on 10 different network properties compared to high-confidence experimental PPI networks in yeast, fruit flies, and humans. Key findings are: (1) PPI networks evolve modular structures, with no need to invoke particular selection pressures. (2) Proteins in cells have on average about 6 degrees of separation, similar to some social networks, such as human-communication and actor networks. (3) Unlike social networks, which have a shrinking diameter (degree of maximum separation) over time, PPI networks are predicted to grow in diameter. (4) The model indicates that evolutionarily old proteins should have higher connectivities and be more centrally embedded in their networks. This suggests a way in which present-day proteomics data could provide insights into biological evolution.  相似文献   

5.
We demonstrate that protein–protein interaction networks in several eukaryotic organisms contain significantly more self-interacting proteins than expected if such homodimers randomly appeared in the course of the evolution. We also show that on average homodimers have twice as many interaction partners than non-self-interacting proteins. More specifically, the likelihood of a protein to physically interact with itself was found to be proportional to the total number of its binding partners. These properties of dimers are in agreement with a phenomenological model, in which individual proteins differ from each other by the degree of their ‘stickiness’ or general propensity toward interaction with other proteins including oneself. A duplication of self-interacting proteins creates a pair of paralogous proteins interacting with each other. We show that such pairs occur more frequently than could be explained by pure chance alone. Similar to homodimers, proteins involved in heterodimers with their paralogs on average have twice as many interacting partners than the rest of the network. The likelihood of a pair of paralogous proteins to interact with each other was also shown to decrease with their sequence similarity. This points to the conclusion that most of interactions between paralogs are inherited from ancestral homodimeric proteins, rather than established de novo after duplication. We finally discuss possible implications of our empirical observations from functional and evolutionary standpoints.  相似文献   

6.
The advent of the "omics" era in biology research has brought new challenges and requires the development of novel strategies to answer previously intractable questions. Molecular interaction networks provide a framework to visualize cellular processes, but their complexity often makes their interpretation an overwhelming task. The inherently artificial nature of interaction detection methods and the incompleteness of currently available interaction maps call for a careful and well-informed utilization of this valuable data. In this tutorial, we aim to give an overview of the key aspects that any researcher needs to consider when working with molecular interaction data sets and we outline an example for interactome analysis. Using the molecular interaction database IntAct, the software platform Cytoscape, and its plugins BiNGO and clusterMaker, and taking as a starting point a list of proteins identified in a mass spectrometry-based proteomics experiment, we show how to build, visualize, and analyze a protein-protein interaction network.  相似文献   

7.

Background  

In recent years, a considerable amount of research effort has been directed to the analysis of biological networks with the availability of genome-scale networks of genes and/or proteins of an increasing number of organisms. A protein-protein interaction (PPI) network is a particular biological network which represents physical interactions between pairs of proteins of an organism. Major research on PPI networks has focused on understanding the topological organization of PPI networks, evolution of PPI networks and identification of conserved subnetworks across different species, discovery of modules of interaction, use of PPI networks for functional annotation of uncharacterized proteins, and improvement of the accuracy of currently available networks.  相似文献   

8.
The scale free structure p(k)-k(-gamma) of protein-protein interaction networks can be reproduced by a static physical model in simulation. We inspect the model theoretically, and find the key reason for the model generating apparent scale free degree distributions. This explanation provides a generic mechanism of 'scale free' networks. Moreover, we predict the dependence of gamma on experimental protein concentrations or other sensitivity factors in detecting interactions, and find experimental evidence to support the prediction.  相似文献   

9.
We introduce clustering with overlapping neighborhood expansion (ClusterONE), a method for detecting potentially overlapping protein complexes from protein-protein interaction data. ClusterONE-derived complexes for several yeast data sets showed better correspondence with reference complexes in the Munich Information Center for Protein Sequence (MIPS) catalog and complexes derived from the Saccharomyces Genome Database (SGD) than the results of seven popular methods. The results also showed a high extent of functional homogeneity.  相似文献   

10.
Itzhaki Z 《PloS one》2011,6(7):e21724
Protein-domains play an important role in mediating protein-protein interactions. Furthermore, the same domain-pairs mediate different interactions in different contexts and in various organisms, and therefore domain-pairs are considered as the building blocks of interactome networks. Here we extend these principles to the host-virus interface and find the domain-pairs that potentially mediate human-herpesvirus interactions. Notably, we find that the same domain-pairs used by other organisms for mediating their interactions underlie statistically significant fractions of human-virus protein inter-interaction networks. Our analysis shows that viral domains tend to interact with human domains that are hubs in the human domain-domain interaction network. This may enable the virus to easily interfere with a variety of mechanisms and processes involving various and different human proteins carrying the relevant hub domain. Comparative genomics analysis provides hints at a molecular mechanism by which the virus acquired some of its interacting domains from its human host.  相似文献   

11.
Alternative splicing plays a key role in the expansion of proteomic and regulatory complexity, yet the functions of the vast majority of differentially spliced exons are not known. In this study, we observe that brain and other tissue-regulated exons are significantly enriched in flexible regions of proteins that likely form conserved interaction surfaces. These proteins participate in significantly more interactions in protein-protein interaction (PPI) networks than other proteins. Using LUMIER, an automated PPI assay, we observe that approximately one-third of analyzed neural-regulated exons affect PPIs. Inclusion of these exons stimulated and repressed different partner interactions at comparable frequencies. This assay further revealed functions of individual exons, including a role for a neural-specific exon in promoting an interaction between Bridging Integrator 1 (Bin1)/Amphiphysin II and Dynamin 2 (Dnm2) that facilitates endocytosis. Collectively, our results provide evidence that regulated alternative exons frequently remodel interactions to establish tissue-dependent PPI networks.  相似文献   

12.

Background  

Although protein-protein interaction networks determined with high-throughput methods are incomplete, they are commonly used to infer the topology of the complete interactome. These partial networks often show a scale-free behavior with only a few proteins having many and the majority having only a few connections. Recently, the possibility was suggested that this scale-free nature may not actually reflect the topology of the complete interactome but could also be due to the error proneness and incompleteness of large-scale experiments.  相似文献   

13.
Lee AJ  Lin MC  Hsu CM 《Bio Systems》2011,103(3):392-399
Many methods have been proposed for mining protein complexes from a protein-protein interaction network; however, most of them focus on unweighted networks and cannot find overlapping protein complexes. Since one protein may serve different roles within different functional groups, mining overlapping protein complexes in a weighted protein-protein interaction network has attracted more and more attention recently. In this paper, we propose an effective method, called MDOS (Mining Dense Overlapping Subgraphs), for mining dense overlapping protein complexes (subgraphs) in a weighted protein-protein interaction network. The proposed method can integrate the information about known complexes into a weighted protein-protein interaction network to improve the mining results. The experiment results show that our method mines more known complexes and has higher sensitivity and accuracy than the CODENSE and MCL methods.  相似文献   

14.
An ensemble framework for clustering protein-protein interaction networks   总被引:3,自引:0,他引:3  
MOTIVATION: Protein-Protein Interaction (PPI) networks are believed to be important sources of information related to biological processes and complex metabolic functions of the cell. The presence of biologically relevant functional modules in these networks has been theorized by many researchers. However, the application of traditional clustering algorithms for extracting these modules has not been successful, largely due to the presence of noisy false positive interactions as well as specific topological challenges in the network. RESULTS: In this article, we propose an ensemble clustering framework to address this problem. For base clustering, we introduce two topology-based distance metrics to counteract the effects of noise. We develop a PCA-based consensus clustering technique, designed to reduce the dimensionality of the consensus problem and yield informative clusters. We also develop a soft consensus clustering variant to assign multifaceted proteins to multiple functional groups. We conduct an empirical evaluation of different consensus techniques using topology-based, information theoretic and domain-specific validation metrics and show that our approaches can provide significant benefits over other state-of-the-art approaches. Our analysis of the consensus clusters obtained demonstrates that ensemble clustering can (a) produce improved biologically significant functional groupings; and (b) facilitate soft clustering by discovering multiple functional associations for proteins. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

15.
Global protein function prediction from protein-protein interaction networks   总被引:20,自引:0,他引:20  
Determining protein function is one of the most challenging problems of the post-genomic era. The availability of entire genome sequences and of high-throughput capabilities to determine gene coexpression patterns has shifted the research focus from the study of single proteins or small complexes to that of the entire proteome. In this context, the search for reliable methods for assigning protein function is of primary importance. There are various approaches available for deducing the function of proteins of unknown function using information derived from sequence similarity or clustering patterns of co-regulated genes, phylogenetic profiles, protein-protein interactions (refs. 5-8 and Samanta, M.P. and Liang, S., unpublished data), and protein complexes. Here we propose the assignment of proteins to functional classes on the basis of their network of physical interactions as determined by minimizing the number of protein interactions among different functional categories. Function assignment is proteome-wide and is determined by the global connectivity pattern of the protein network. The approach results in multiple functional assignments, a consequence of the existence of multiple equivalent solutions. We apply the method to analyze the yeast Saccharomyces cerevisiae protein-protein interaction network. The robustness of the approach is tested in a system containing a high percentage of unclassified proteins and also in cases of deletion and insertion of specific protein interactions.  相似文献   

16.
MOTIVATION: Algorithmic and modeling advances in the area of protein-protein interaction (PPI) network analysis could contribute to the understanding of biological processes. Local structure of networks can be measured by the frequency distribution of graphlets, small connected non-isomorphic induced subgraphs. This measure of local structure has been used to show that high-confidence PPI networks have local structure of geometric random graphs. Finding graphlets exhaustively in a large network is computationally intensive. More complete PPI networks, as well as PPI networks of higher organisms, will thus require efficient heuristic approaches. RESULTS: We propose two efficient and scalable heuristics for finding graphlets in high-confidence PPI networks. We show that both PPI and their model geometric random networks, have defined boundaries that are sparser than the 'inner parts' of the networks. In addition, these networks exhibit 'uniformity' of local structure inside the networks. Our first heuristic exploits these two structural properties of PPI and geometric random networks to find good estimates of graphlet frequency distributions in these networks up to 690 times faster than the exhaustive searches. Our second heuristic is a variant of a more standard sampling technique and it produces accurate approximate results up to 377 times faster than the exhaustive searches. We indicate how the combination of these approaches may result in an even better heuristic. AVAILABILITY: Supplementary information is available at http://www.cs.toronto.edu/~natasha/BIOINF-2005-0946/Supplementary.pdf. Software implementing the algorithms is available at http://www.cs.toronto.edu/~natasha/BIOINF-2005-0946/estimate_grap-hlets.html. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

17.
Protein-protein interaction (PPI) prediction is a central task in achieving a better understanding of cellular and intracellular processes. Because high-throughput experimental methods are both expensive and time-consuming, and are also known of suffering from the problems of incompleteness and noise, many computational methods have been developed, with varied degrees of success. However, the inference of PPI network from multiple heterogeneous data sources remains a great challenge. In this work, we developed a novel method based on approximate Bayesian computation and modified differential evolution sampling (ABC-DEP) and regularized laplacian (RL) kernel. The method enables inference of PPI networks from topological properties and multiple heterogeneous features including gene expression and Pfam domain profiles, in forms of weighted kernels. The optimal weights are obtained by ABC-DEP, and the kernel fusion built based on optimal weights serves as input to RL to infer missing or new edges in the PPI network. Detailed comparisons with control methods have been made, and the results show that the accuracy of PPI prediction measured by AUC is increased by up to 23 %, as compared to a baseline without using optimal weights. The method can provide insights into the relations between PPIs and various feature kernels and demonstrates strong capability of predicting faraway interactions that cannot be well detected by traditional RL method.  相似文献   

18.
19.
The systematic characterization of the whole interactomes of different model organisms has revealed that the eukaryotic proteome is highly interconnected. Therefore, biological research is progressively shifting away from classical approaches that focus only on a few proteins toward whole protein interaction networks to describe the relationship of proteins in biological processes. In this minireview, we survey the most common methods for the systematic identification of protein interactions and exemplify different strategies for the generation of protein interaction networks. In particular, we will focus on the recent development of protein interaction networks derived from quantitative proteomics data sets.  相似文献   

20.
MOTIVATION: Recent screening techniques have made large amounts of protein-protein interaction data available, from which biologically important information such as the function of uncharacterized proteins, the existence of novel protein complexes, and novel signal-transduction pathways can be discovered. However, experimental data on protein interactions contain many false positives, making these discoveries difficult. Therefore computational methods of assessing the reliability of each candidate protein-protein interaction are urgently needed. RESULTS: We developed a new 'interaction generality' measure (IG2) to assess the reliability of protein-protein interactions using only the topological properties of their interaction-network structure. Using yeast protein-protein interaction data, we showed that reliable protein-protein interactions had significantly lower IG2 values than less-reliable interactions, suggesting that IG2 values can be used to evaluate and filter interaction data to enable the construction of reliable protein-protein interaction networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号