首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stochastic simulations were run to compare the effects of nine breeding schemes, using full-sib mating, on the rate of purging of inbreeding depression due to mutations with equal deleterious effect on viability at unlinked loci in an outbred population. A number of full-sib mating lines were initiated from a large outbred population and maintained for 20 generations (if not extinct). Selection against deleterious mutations was allowed to occur within lines only, between lines or equal within and between lines, and surviving lines were either not crossed or crossed following every one or three generations of full-sib mating. The effectiveness of purging was indicated by the decreased number of lethal equivalents and the increased fitness of the purged population formed from crossing surviving lines after 20 generations under a given breeding scheme. The results show that the effectiveness of purging, the survival of the inbred lines and the inbreeding level attained are generally highest with between-line selection and lowest with within-line selection. Compared with no crossing, line crossing could lower the risk of extinction and the inbreeding coefficient of the purged population substantially with little loss of the effectiveness of purging. Compromising between the effectiveness of purging, and the risk of extinction and inbreeding coefficient, the breeding scheme with equal within- and between-line selection and crossing alternatively with full-sib mating is generally the most desirable scheme for purging deleterious mutations. Unless most deleterious mutations have relatively large effects on fitness in species with reproductive ability high enough to cope with the depressed fitness and thus increased risk of extinction with inbreeding, it is not justified to apply a breeding programme aimed at purging inbreeding depression by inbreeding and selection to a population of conservation concern.  相似文献   

2.
Inbreeding depression (ID) has since long been recognized as a significant factor in evolutionary biology. It is mainly the consequence of (partially) recessive deleterious mutations maintained by mutation-selection balance in large random mating populations. When population size is reduced, recessive alleles are increasingly found in homozygous condition due to drift and inbreeding and become more prone to selection. Particularly at slow rates of drift and inbreeding, selection will be more effective in purging such alleles, thereby reducing the amount of ID. Here we test assumptions of the efficiency of purging in relation to the inbreeding rate and the experimental conditions for four traits in D. melanogaster. We investigated the magnitude of ID for lines that were inbred to a similar level, F ≈ 0.50, reached either by three generations of full-sib mating (fast inbreeding), or by 12 consecutive generations with a small population size (slow inbreeding). This was done on two different food media. We observed significant ID for egg-to-adult viability and heat shock mortality, but only for egg-to-adult viability a significant part of the expressed inbreeding depression was effectively purged under slow inbreeding. For other traits like developmental time and starvation resistance, however, adaptation to the experimental and environmental conditions during inbreeding might affect the likelihood of purging to occur or being detected. We discuss factors that can affect the efficiency of purging and why empirical evidence for purging may be ambiguous.Subject terms: Evolutionary genetics, Inbreeding  相似文献   

3.
Inbreeding and extinction: Effects of rate of inbreeding   总被引:5,自引:0,他引:5  
Deleterious alleles may be removed (purged) bynatural selection in populations undergoinginbreeding. However, there is controversyregarding the effectiveness of selection inreducing the risk of extinction due toinbreeding, especially in relation to the rateof inbreeding. We evaluated the effect of therate of inbreeding on reducing extinction risk,in populations of Drosophila melanogastermaintained using full-sib mating (160replicates), or at effective population sizes(N e) of 10 (80) or 20 (80).Extinction rates in the populations maintainedusing full-sib mating occurred at lower levelsof inbreeding than in the larger populations,whereas the two larger populations did notdiffer significantly from each other.Inbreeding coefficients at 50% extinction were0.62, 0.79 and 0.77 for the full-sib (N e = 2.6), N e = 10 and N e = 20 treatments, respectively. Populations of N e = 20 that remained extant after 60 generations, showed inbreeding depression, with the mean fitness of these populations being only 45% of the outbredcontrols. There was considerable variationamong the 31 inbred populations in fitness, butnone of the N e = 20 populations hadfitness that was higher than the outbredcontrol. We conclude that purging may slow therate of extinction slightly, but it cannot berelied on to eliminate the deleterious effectsof inbreeding.  相似文献   

4.
Inbreeding adversely affects life history traits as well as various other fitness‐related traits, but its effect on cognitive traits remains largely unexplored, despite their importance to fitness of many animals under natural conditions. We studied the effects of inbreeding on aversive learning (avoidance of an odour previously associated with mechanical shock) in multiple inbred lines of Drosophila melanogaster derived from a natural population through up to 12 generations of sib mating. Whereas the strongly inbred lines after 12 generations of inbreeding (0.75 < F < 0.93) consistently showed reduced egg‐to‐adult viability (on average by 28%), the reduction in learning performance varied among assays (average = 18% reduction), being most pronounced for intermediate conditioning intensity. Furthermore, moderately inbred lines (F = 0.38) showed no detectable decline in learning performance, but still had reduced egg‐to‐adult viability, which indicates that overall inbreeding effects on learning are mild. Learning performance varied among strongly inbred lines, indicating the presence of segregating variance for learning in the base population. However, the learning performance of some inbred lines matched that of outbred flies, supporting the dominance rather than the overdominance model of inbreeding depression for this trait. Across the inbred lines, learning performance was positively correlated with the egg‐to‐adult viability. This positive genetic correlation contradicts a trade‐off observed in previous selection experiments and suggests that much of the genetic variation for learning is owing to pleiotropic effects of genes affecting functions related to survival. These results suggest that genetic variation that affects learning specifically (rather than pleiotropically through general physiological condition) is either low or mostly due to alleles with additive (semi‐dominant) effects.  相似文献   

5.
Successful reintroduction of endangered species depends in part on their ability to respond to changing environmental conditions. Population genetics theory suggests that inbred populations lacking genetic variability may be unable to respond effectively to environmental stress. There have been very few studies designed explicitly to investigate the phenomenon of inbreeding depression under environmental stress, particularly in the context of conservation genetics. Three separate experiments using Drosophila melanogaster were designed to explore this issue. No increase in the magnitude of inbreeding depression was detected in laboratory lines subjected to three generations of continuous full-sib mating under temperature stress (28°C), lead stress (medium contaminated with 400 ppm Pb), or a combination of these stresses. Individual isofemale lines from a different population, however, did show significant increases in inbreeding depression when exposed to temperature stress for one generation of full-sib mating following three generations of full-sib inbreeding at 25°C. Further, chromosome-2 homozygotes showed, on average, a significant increase in inbreeding depression under lead stress when in competition with corresponding chromosome-2 heterozygotes compared to the same lines in a benign environment. Taken together, these results suggest that inbreeding depression is more severe under conditions of environmental stress and is more likely to be realized in an inter- or intraspecific competitive situation as can be experienced in the wild. Therefore, it is likely that reduced genetic variability through inbreeding is a much greater problem for recently reintroduced populations than it is for populations in a relatively benign zoo environment. © 1994 Wiley-Liss, Inc.  相似文献   

6.
Effects of inbreeding on economic traits of channel catfish   总被引:2,自引:0,他引:2  
Summary Inbred channel catfish (Ictalurus punctatus) were produced from two generations of full-sib matings to study the effect of inbreeding on reproduction, growth and survival. A randomly mated control line was propagated from the same base population to be used for the evaluation of the inbred fish. First generation inbred (I1) and control (C1) lines comprised five full-sib families each. Second generation inbred (I2) and control (C2) lines were produced by mating each male catfish from the I1 or C1 line to two females in sequence, one from the I1 and one from the C1 line. The design also produced two reciprocal outcross lines to be compared to their contemporary inbred and control lines. The coefficient of inbreeding for the inbred line increased from 0.25 in generation 1 to 0.375 in generation 2. The inbreeding coefficient was zero for all other lines. The resulting fish were performance tested in two locations, Tifton, Georgia and Auburn, Alabama and no genotype-environment interactions occurred. Results indicated that one generation of inbreeding increased number of days required for eggs to hatch by 21%, but did not significantly influence spawn weight or hatchability score. However, inbred females produced more eggs/kg body weight than control females. Two generations of full-sib mating in Georgia did not depress weight when expressed as a deviation to random controls but was depressed 13–16% when expressed as a deviation to half-sib out-crosses. Second generation inbreds produced in Alabama exhibited a 19% depression for growth rate when compared to either random or half-sib outcross controls. Survival rates at various age intervals was not decreased by inbreeding. The amount of inbreeding depression varied among families and between sexes.This study was supported by State and Hatch Funds allocated to the Georgia and Alabama Agricultural Experiment Stations  相似文献   

7.
Genome duplication resulting in polyploidy can have significant consequences for the evolution of mating systems. Most theory predicts that self‐fertilization will be selectively favored in polyploids; however, many autopolyploids are outcrossing or mixed‐mating. Here, we examine the hypothesis that the evolution of selfing is restricted in autopolyploids because the genetic cost of selfing (i.e., inbreeding depression) increases monotonically with successive generations of inbreeding. Using the herbaceous, autotetraploid plant Chamerion angustifolium, we generated populations with different inbreeding coefficients (F= 0, 0.17 and 0.36) through three consecutive generations of selfing and compared their magnitudes of inbreeding depression in a common environment. Mating system estimates for four natural populations confirmed that tetraploid selfing rates (sm= 0.25, SE = 0.02) are similar to those of diploids (sm= 0.12, SE = 0.12; F1,2= 1.34, P= 0.37) indicating that both cytotypes are predominantly outcrossing. Compared to an outbred control line, mean inbreeding depression for seed production, survival, and height (vegetative and total) in the inbred line differed among generations (inbreeding coefficients). Across all stages, inbreeding depression (relative to control) was positively related to generation (inbreeding coefficient). Although the initial costs of inbreeding in extant and newly synthesized polyploids may be low compared to diploids, the monotonic increase in inbreeding depression with repeated inbreeding may limit the extent to which selfing variants are favored.  相似文献   

8.
 The effects of inbreeding on growth, survival and variance in a 12-year-old radiata pine trial were studied in five populations each inbred to one of five different levels: outcross (F=0), half-sib (F=0.125), full-sib (F=0.25), selfing (S1, F=0.5), and two-generations of selfing (S2, F=0.75). These five populations were derived from a founder population of eight clones. Inbreeding reduced diameter, growth, and survival but increased the variance for diameter. Inbreeding depression at F=0.125, 0.25, 0.5, and 0.75 was 5%, 6%, 15%, and 19% respectively for DBH; −3%, 1%, 7%, and 11% respectively, for survival. The standard deviation for diameter increased by 10%, 10%, 30%, and 25% respectively for F=0.125, 0.25, 0.5, and 0.75 and, similarly, the coefficient of variation increased by 17%, 16%, 53%, and 55% respectively. There were significant differences among the eight founder clones in their response to inbreeding. The best clone in the trial showed no inbreeding depression. Overall, inbreeding depression was found to be linearly related to the inbreeding coefficient F with no significant quadratic effects for any trait at any population level. However, two individual clones had a quadratic relationship with F for DBH and one clone had a similar relationship for survival. A significant correlation (r=0.96) between S2 and the breeding values of founder clones was observed while the correlation (r=0.58) between S1 and breeding values was insignificant. The low inbreeding depression in radiata pine relative to other conifers may indicate that historical purging of detrimental alleles through small geographic populations, a higher degree of population subdivision, and the relative high fecundity of inbred progenies has rendered radiata pine an ideal species to use inbreeding as a breeding tool. Received: 10 March 1998 / Accepted: 19 May 1998  相似文献   

9.
Summary The aim of the experiment was to determine if the estimated genetic distance between two populations could be used to predict the amount of heterosis that would occur when they were crossed. Eight lines of known relatedness to each other were produced by eight generations of sib mating and sub-lining. This produced lines that varied in coefficient of coancestry from zero to 0.78. Fourteen reciprocal crosses of these lines were used to measure heterosis for larval viability and adult fecundity. Gene frequencies at six polymorphic enzyme loci were used to estimate the genetic distances between lines, which were then compared with the known degrees of coancestry. The estimated genetic differences were poorly correlated with the known coancestry coefficients (r=0.4), possibly due to the small number of loci typed. Also genetic distances were only about 1/3 of what was expected. Selection acting on blocks of genes linked to the enzyme loci probably prevented the expected increase in homozygosity. Coancestry coefficient was correlated with heterosis (r=0.44–0.71). This level of correlation implied differences in heterosis among parent lines with the same level of coancestry. This variability is expected if a small number of loci explain most of the heterosis. The average level of heterosis was less than expected after eight generations of sib mating. This is most likely due to selection opposing the increase in homozygosity caused by inbreeding. The combination of these two imperfect correlations resulted in no significant correlation between genetic distance estimated from markers and heterosis.  相似文献   

10.
Induction of heat shock proteins (Hsp) is a well-known mechanism through which cells cope with stressful conditions. Hsp are induced by a variety of extrinsic stressors. However, recently intrinsic stressors (aging and inbreeding) have been shown to affect expression of Hsp. Increased homozygosity due to inbreeding may disrupt cellular homeostasis by causing increased expression of recessive deleterious mutations and breakdown of epistatic interactions. We investigated the effect of inbreeding and the rate of inbreeding on the expression of Hsp70, larval heat resistance and fecundity. In Drosophila melanogaster we found that inbred lines (F approximately 0.67) had significantly up-regulated expression of Hsp70, and reduced heat resistance and fecundity as compared with outbred control lines. A significant negative correlation was observed between Hsp70 expression and resistance to an extreme heat stress in inbred lines. We interpreted this as an increased requirement for Hsp70 in the lines suffering most from inbreeding depression. Inbreeding depression for fecundity was reduced with a slower rate of inbreeding compared with a fast rate of inbreeding. Thus, the effectiveness of purging seems to be improved with a slower rate of inbreeding.  相似文献   

11.
Age-specific effects of inbreeding on fecundity were assayed for adzuki bean weevil Callosobruchus chinensis by comparing inbred lines and their cross. Four consecutive full-sib matings reduced only 10.3 percent in total fecundity, and did not decrease early fecundity at all until third day from the onset of reproduction. It is suggested that recessive detrimental genes have been eliminated from the early period of adult life span when reproductive value is high. There was a slight tendency that inbreeding depression increased as age proceeded though not statistically significant.  相似文献   

12.
The increased homozygosity due to inbreeding leads to expression of deleterious recessive alleles, which may cause inbreeding depression in small populations. The severity of inbreeding depression has been suggested to depend on the rate of inbreeding, with slower inbreeding being more effective in purging deleterious alleles of smaller effect. The effectiveness of purging is however dependent on various factors such as the effect of the deleterious, recessive alleles, the genetic background of inbreeding depression and the environment in which purging occurs. Investigations have shown inconclusive results as to whether purging efficiently diminish inbreeding depression. Here we used an ecologically relevant inbreeding coefficient (f ≈ 0.25) and generated ten slow and ten fast inbred lines of Drosophila melanogaster by keeping the effective population size constant at respectively 32 and 2 for 19 or 2 generations. These inbred lines were contrasted to non-inbred control lines. We investigated the effect of inbreeding and inbreeding rate in traits associated with fitness including heat, cold and desiccation stress resistance, egg-to-adult viability, development time, productivity, metabolic rate and wet weight under laboratory conditions. The results showed highly trait specific consequences of inbreeding and generally no support for the hypothesis that slow inbreeding is less deleterious than fast inbreeding. Egg-to-adult viability and development time were investigated under both benign and heat stress conditions. Reduced viability and increased developmental time were observed at stressful temperatures and inbreeding depression was on average more severe at stressful compared to benign temperatures.  相似文献   

13.
The relationship between inbreeding depression and inbreeding coefficient (F) for several important traits was investigated in an 11-year trial of maritime pine (Pinus pinaster). Five levels of inbreeding (F=0; 0.125; 0.25; 0.5; 0.75) were obtained in a mating design involving ten plus-trees, or their progenies, as parents (total of 51 families). For F=0.75, the mean inbreeding depressions were 27% for height, 37% for circumference at breast height (63% for bole volume), 23% for basal straightness (better straightness of the inbred trees), and 89% for female fertility (number of cones). Large differences were observed among inbred families for the same level of inbreeding. The evolution of depression with F was more or less linear, depending on the traits. Significant differences among F-levels appeared very early for height (from 5-years of age). Inbreeding depression was much more expressed during unfavorable years than during favorable years for yearly height growth. When compared with other Pinus species, maritime pine appears to be less affected by inbreeding, especially for the percentage of filled seeds and general vigor. A reduced genetic load in maritime pine may result from the evolutionary history of the species and its scattered distribution.  相似文献   

14.
Inbreeding depression, the decline in fitness of inbred individuals, is a ubiquitous phenomenon of great relevance in evolutionary biology and in the fields of animal and plant breeding and conservation. Inbreeding depression is due to the expression of recessive deleterious alleles that are concealed in heterozygous state in noninbred individuals, the so-called inbreeding load. Genetic purging reduces inbreeding depression by removing these alleles when expressed in homozygosis due to inbreeding. It is generally thought that fast inbreeding (such as that generated by full-sib mating lines) removes only highly deleterious recessive alleles, while slow inbreeding can also remove mildly deleterious ones. However, a question remains regarding which proportion of the inbreeding load can be removed by purging under slow inbreeding in moderately large populations. We report results of two long-term slow inbreeding Drosophila experiments (125–234 generations), each using a large population and a number of derived lines with effective sizes about 1000 and 50, respectively. The inbreeding load was virtually exhausted after more than one hundred generations in large populations and between a few tens and over one hundred generations in the lines. This result is not expected from genetic drift alone, and is in agreement with the theoretical purging predictions. Computer simulations suggest that these results are consistent with a model of relatively few deleterious mutations of large homozygous effects and partially recessive gene action.Subject terms: Quantitative trait, Inbreeding  相似文献   

15.
Selection by inbreeding depression should favour mating biases that reduce the risk of fertilization by related mates. However, equivocal evidence for inbreeding avoidance questions the strength of inbreeding depression as a selective force in the evolution of mating biases. Lack of inbreeding avoidance can be because of low risk of inbreeding, variation in tolerance to inbreeding or high costs of outbreeding. We examined the relationship between inbreeding depression and inbreeding avoidance adaptations under two levels of inbreeding in the spider Oedothorax apicatus, asking whether preference for unrelated sperm via pre- and/or post-copulatory mechanisms could restore female fitness when inbreeding depression increases. Using inbred isofemale lines we provided female spiders with one or two male spiders of different relatedness in five combinations: one male sib; one male nonsib; two male sibs; two male nonsibs; one male sib and one male nonsib. We assessed the effect of mating treatment on fecundity and hatching success of eggs after one and three generations of inbreeding. Inbreeding depression in F1 was not sufficient to detect inbreeding avoidance. In F3, inbreeding depression caused a major decline in fecundity and hatching rates of eggs. This effect was mitigated by complete recovery in fecundity in the sib-nonsib treatment, whereas no rescue effect was detected in the hatching success of eggs. The rescue effect is best explained by post-mating discrimination against kin via differential allocation of resources. The natural history of O. apicatus suggests that the costs of outbreeding may be low which combined with high costs of inbreeding should select for avoidance mechanisms. Direct benefits of post-mating inbreeding avoidance and possibly low costs of female multiple mating can favour polyandry as an inbreeding avoidance mechanism.  相似文献   

16.
J Wang  W G Hill 《Genetics》1999,153(3):1475-1489
Transition matrices for selfing and full-sib mating were derived to investigate the effect of selection against deleterious mutations on the process of inbreeding at a linked neutral locus. Selection was allowed to act within lines only (selection type I) or equally within and between lines (type II). For selfing lines under selection type I, inbreeding is always retarded, the retardation being determined by the recombination fraction between the neutral and selected loci and the inbreeding depression from the selected locus, irrespective of the selection coefficient (s) and dominance coefficient (h) of the mutant allele. For selfing under selection type II or full-sib mating under both selection types, inbreeding is delayed by weak selection (small s and sh), due to the associative overdominance created at the neutral locus, and accelerated by strong selection, due to the elevated differential contributions between alternative alleles at the neutral locus within individuals and between lines (for selection type II). For multiple fitness loci under selection, stochastic simulations were run for populations with selfing, full-sib mating, and random mating, using empirical estimates of mutation parameters and inbreeding load in Drosophila. The simulations results are in general compatible with empirical observations.  相似文献   

17.
Selection may reduce the deleterious consequences of inbreeding. This may be due to purging of recessive deleterious alleles or balancing selection favouring heterozygote offspring. Such selection is expected to be more efficient at slower compared to at faster rates of inbreeding. In this study we tested the impact of inbreeding and the rate of inbreeding on fitness related traits (egg productivity, egg-to-adult viability, developmental time and behaviour) under cold and benign semi-natural thermal conditions using Drosophila melanogaster as a model organism. We used non-inbred control and slow and fast inbred lines (both with an expected inbreeding level of 0.25). The results show that contrary to expectations the slow inbred lines do not maintain higher average fitness than the fast inbred lines. Furthermore, we found that stressful environmental conditions increased the level of inbreeding depression but the impact of inbreeding rate on the level of inbreeding depression was not affected by the environmental conditions. The results do not support the hypothesis that inbreeding depression is less severe with slow compared to fast rates of inbreeding and illustrate that although selection may be more efficient with slower rates of inbreeding this does not necessary lead to less inbreeding depression.  相似文献   

18.
Studies of inbreeding depression in plant populations have focused primarily on comparisons of selfing versus outcrossing in self-compatible species. Here we examine the effect of five naturally occurring levels of inbreeding (f ranging from 0 to 0.25 by pedigree) on components of lifetime fitness in a field population of the self-incompatible annual, Raphanus sativus. Pre- and postgermination survival and reproductive success were examined for offspring resulting from compatible cross-pollinations. Multiple linear regression of inbreeding level on rates of fruit and seed abortion as well as seed weight and total seed weight per fruit were not significant. Inbreeding level was not found to affect seed germination, offspring survival in the field, date of first flowering, or plant biomass (dry weight minus fruit). The effect of inbreeding on seedling viability in the greenhouse and viability to flowering was significant but small and inconsistently correlated with inbreeding level. Maternal fecundity, however, a measure of seed yield, was reduced almost 60% in offspring from full-sib crosses (f = 0.25) relative to offspring resulting from experimental outcross pollinations (f = 0). Water availability, a form of physiological stress, affected plant biomass but did not affect maternal fecundity, nor did it interact with inbreeding level to influence these characters. The delayed expression of strong inbreeding depression suggests that highly deleterious recessive alleles were not a primary cause of fitness loss with inbreeding. Highly deleterious recessives may have been purged by bottlenecks in population size associated with the introduction of Raphanus and its recent range expansions. In general, reductions in total relative fitness of greater than 50% associated with full-sib crosses should be sufficient to prohibit the evolution of self-compatibility via transmission advantage in Raphanus.  相似文献   

19.
The effects of inbreeding, with (IS) and without selection (IO) for reproductive fitness, on inbreeding depression and heterozygosity were evaluated in 20 lines of each treatment inbred over seven generations using full-sib mating. The survival of lines was significantly greater in IS (20/20) than in IO (15/20). The competitive index measure of reproductive fitness was significantly lower in the inbred lines than in the outbred base population, but not significantly different in surviving IS and IO lines. There was a trend for higher fitness in the IS treatment as relative fitnesses were 19% higher in IS than IO for surviving lines and 59% higher for all lines. Heterozygosities were lower in the inbred lines than in the base population, and significantly higher in the IS than the IO lines. Consequently, the reduction of inbreeding depression in IS has been achieved, at least in part, by slowing the rate of fixation.  相似文献   

20.
The magnitude of inbreeding depression is often larger in traits closely related to fitness, such as survival and fecundity, compared to morphological traits. Reproductive behaviour is also closely associated with fitness, and therefore expected to show strong inbreeding depression. Despite this, little is known about how reproductive behaviour is affected by inbreeding. Here we show that one generation of full‐sib mating results in a decrease in male reproductive performance in the least killifish (Heterandria formosa). Inbred males performed less gonopodial thrusts and thrust attempts than outbred males (δ = 0.38). We show that this behaviour is closely linked with fitness as gonopodial performance correlates with paternity success. Other traits that show inbreeding depression are offspring viability (δ = 0.06) and maturation time of males (δ = 0.19) and females (δ = 0.14). Outbred matings produced a female biased sex ratio whereas inbred matings produced an even sex ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号