首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hemopoietic specific adapter protein ADAP (adhesion and degranulation-promoting adapter protein) positively regulates TCR-dependent, integrin-mediated adhesion and participates in signaling pathways downstream of the TCR that result in T cell activation. The specific role of ADAP in regulating Ag-dependent T cell interactions with APCs and T cell activation following Ag stimulation is not known. We used ADAP-/- DO11.10 T cells to demonstrate that ADAP promotes T cell conjugation to Ag-laden APCs. Complementary in vitro and in vivo approaches reveal that ADAP controls optimal T cell proliferation, cytokine production, and expression of the prosurvival protein Bcl-xL in response to limiting Ag doses. Furthermore, ADAP is critical for clonal expansion in vivo independent of Ag concentration under conditions of low clonal abundance. These results suggest that ADAP regulates T cell activation by promoting Ag-dependent T cell-APC interactions, resulting in enhanced T cell sensitivity to Ag, and by participating in prosurvival signaling pathways initiated by Ag stimulation.  相似文献   

2.
The tetraspanin CD151 forms a stoichiometric complex with integrin alpha3beta1 and regulates its endocytosis. We observed that down-regulation of CD151 in various epithelial cell lines changed glycosylation of alpha3beta1. In contrast, glycosylation of other transmembrane proteins, including those associated with CD151 (e.g. alpha6beta1, CD82, CD63, and emmprin/CD147) was not affected. The detailed analysis has shown that depletion of CD151 resulted in the reduction of Fucalpha1-2Gal and bisecting GlcNAc-beta(1-->4) linkage on N-glycans of the alpha3 integrin subunit. The modulatory activity of CD151 toward alpha3beta1 was specific, because stable knockdown of three other tetraspanins (i.e. CD9, CD63, and CD81) did not affect glycosylation of the integrin. Analysis of alpha3 glycosylation in CD151-depleted breast cancer cells with reconstituted expression of various CD151 mutants has shown that a direct contact with integrin is required but not sufficient for the modulatory activity of the tetraspanin toward alpha3beta1. We also found that glycosylation of CD151 is also critical; Asn(159) --> Gln mutation in the large extracellular loop did not affect interactions of CD151 with other tetraspanins or alpha3beta1 but negated its modulatory function. Changes in the glycosylation pattern of alpha3beta1 observed in CD151-depleted cells correlated with a dramatic decrease in cell migration toward laminin-332. Migration toward fibronectin or static adhesion of cells to extracellular matrix ligands was not affected. Importantly, reconstituted expression of the wild-type CD151 but not glycosylation-deficient mutant restored the migratory potential of the cells. These results demonstrate that CD151 plays an important role in post-translation modification of alpha3beta1 integrin and strongly suggest that changes in integrin glycosylation are critical for the promigratory activity of this tetraspanin.  相似文献   

3.
Integrins are alphabeta transmembrane receptors that function in key cellular processes, including cell adhesion, differentiation, and extracellular matrix deposition through interactions with extracellular, membrane, and cytoplasmic proteins. We previously identified and cloned a muscle beta1 integrin cytoplasmic binding protein termed MIBP and found that the expression level of MIBP is critical in the decision-making process of terminal myogenic differentiation. We report here that MIBP interacts with the alpha7beta1 integrin but not the alpha5beta1 integrin in C2C12 myoblasts, suggesting an important role of integrin alpha chains in the regulation of the beta1-MIBP interaction. Furthermore, consistent with its selective binding activity toward the alpha7beta1 laminin receptor, we have found that overexpression of MIBP in C2C12 myoblasts resulted in a significant reduction of cell adhesion to laminin and inhibition of laminin matrix deposition. By contrast, neither cell adhesion to fibronectin nor fibronectin matrix deposition was significantly altered in cells overexpressing MIBP. Finally, we show that both the protein level and tyrosine phosphorylation of paxillin, a key signaling molecule involved in the cellular control of myogenic differentiation, are increased by MIBP. These results suggest that MIBP functions in the control of myogenic differentiation by regulating alpha7beta1 integrin-mediated cell interactions with laminin matrix and intracellular signaling through paxillin.  相似文献   

4.
During cell migration, the physical link between the extracellular substrate and the actin cytoskeleton mediated by receptors of the integrin family is constantly modified. We analyzed the mechanisms that regulate the clustering and incorporation of activated alphavbeta3 integrins into focal adhesions. Manganese (Mn2+) or mutational activation of integrins induced the formation of de novo F-actin-independent integrin clusters. These clusters recruited talin, but not other focal adhesion adapters, and overexpression of the integrin-binding head domain of talin increased clustering. Integrin clustering required immobilized ligand and was prevented by the sequestration of phosphoinositole-4,5-bisphosphate (PI(4,5)P2). Fluorescence recovery after photobleaching analysis of Mn(2+)-induced integrin clusters revealed increased integrin turnover compared with mature focal contacts, whereas stabilization of the open conformation of the integrin ectodomain by mutagenesis reduced integrin turnover in focal contacts. Thus, integrin clustering requires the formation of the ternary complex consisting of activated integrins, immobilized ligands, talin, and PI(4,5)P2. The dynamic remodeling of this ternary complex controls cell motility.  相似文献   

5.
We have identified Src-like adaptor protein (SLAP) as one of several dexamethasone-inducible inhibitory regulators in mast cells. SLAP is a known inhibitor of T cell signaling and interacts with the tyrosine kinase, Zap70. Exposure of RBL-2H3 mast cells to dexamethasone markedly increased expression of SLAP. Cells so exposed or made to overexpress SLAP exhibited reduced Ag-stimulated phosphorylation of Syk (a cognate of Zap70), linker for activation of T cells, phospholipase Cgamma, and ERK. Ca(2+) mobilization, Ca(2+)-dependent degranulation, and ERK-dependent release of arachidonic acid were suppressed as well. Small interfering RNA directed against SLAP blocked the induction of SLAP and reversed the inhibitory effects of dexamethasone on phosphorylation of Syk, linker for activation of T cells, and phospholipase Cgamma, but not downstream events, which are likely suppressed by up-regulation of downstream of tyrosine kinase-1 and MAPK phosphatase-1. The induction of these inhibitory regulators may contribute to the immunosuppressive activity of dexamethasone in mast cells.  相似文献   

6.
7.
GIT1 is an adaptor protein, which links signaling proteins to focal adhesion, thereby regulating cytoskeletal reorganization. Platelets undergo dynamic cytoskeletal reorganization during platelet activation, for which a large number of adaptor proteins are required. However, there has been no report of GIT1 in platelets. We found that GIT1 was abundantly expressed in platelets and underwent tyrosine phosphorylation downstream of integrin αIIbβ3, which was inhibited by the Src kinase inhibitor PP2. Furthermore, GIT1 constitutively associated with βPIX, a guanine nucleotide exchange factor (GEF) for Rac. The GIT1/βPIX complex associated with αIIbβ3, concomitantly with GIT1 tyrosine phosphorylation. Moreover, both GIT1 and αIIbβ3 rapidly translocated to the cytoskeletal fraction during platelet aggregation, which was not observed in the absence of aggregation. These results suggest that tyrosine phosphorylation of GIT1 by Src kinases may regulate cytoskeletal reorganization downstream of αIIbβ3 by bringing the Rac GEF βPIX to the vicinity of the integrin.  相似文献   

8.
Kinases that associate with integrins are likely to mediate the assembly/disassembly of cell:matrix junctions during cell migration. Here we show that ERK1 associates with alpha(v)beta(3) integrin following the addition of platelet-derived growth factor to serum-starved Swiss or NIH 3T3 fibroblasts in an interaction that is mediated by the central region of the beta(3) integrin cytodomain. alpha(v)beta(3).ERK1 association occurred prior to focal complex formation and was seen to initiate in small punctate complexes primarily in the peripheral regions of the plasma membrane. Expression of a dominant negative mutant of ERK1 (but not ERK2) significantly reduced the spreading of cells on vitronectin, whereas cell spreading on fibronectin was unaffected by inhibition of ERK1. In contrast, inhibition of ERK activation by PD98059 had no effect on the platelet-derived growth factor-regulated Rab4-dependent flux of alpha(v)beta(3) integrin from early endosomes to the plasma membrane, an event that is also necessary for cells to spread efficiently on vitronectin. We propose that alpha(v)beta(3) integrin must recycle to the plasma membrane via the Rab4 pathway and recruit active ERK1 in order to function efficiently.  相似文献   

9.
Caveolin-1 plays a checkpoint function in the regulation of processes often altered in cancer. Although increased expression of caveolin-1 seems to be the norm in the glioma family of malignancies, populations of caveolin-1 positive and negative cells coexist among glioblastoma specimens. As no data are available to date on the contribution of such cells to the phenotype of glioblastoma, we manipulated caveolin-1 in the glioblastoma cell line U87MG. We showed that caveolin-1 plays a critical role in the aggressiveness of glioblastoma. We identified integrins as the main set of genes affected by caveolin-1. We reported here that the phenotypic changes observed after caveolin-1 modulation were mediated by alpha(5)beta(1) integrins. As a consequence of the regulation of alpha(5)beta(1) levels by caveolin-1, the sensitivity of cells to the specific alpha(5)beta(1) integrin antagonist, SJ749, was affected. Mediator of caveolin-1 effects, alpha(5)beta(1) integrin, is also a marker for glioma aggressiveness and an efficient target for the treatment of glioma especially the ones exerting the highest aggressive phenotype.  相似文献   

10.
The adapter molecule Src homology 2 (SH2) domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) is essential for FcepsilonRI-mediated signaling, degranulation and IL-6 production in mast cells. To test the structural requirements of SLP-76 in mast cell signaling and function, we have studied the functional responses of murine bone marrow-derived mast cells (BMMCs) expressing mutant forms of SLP-76. We found that the N-terminal tyrosines as well as the central proline-rich region of SLP-76 are required for participation of SLP-76 in FcepsilonRI-mediated signaling and function. The C-terminal SH2 domain of SLP-76 also contributes to optimal function of SLP-76 in mast cells. Another adapter molecule, adhesion- and degranulation-promoting adapter protein (ADAP), is known to bind the SH2 domain of SLP-76, and cell line studies have implicated ADAP in mast cell adhesion and FcepsilonRI-induced degranulation. Surprisingly, we found that mast cells lacking ADAP expression demonstrate no defects in FcepsilonRI-induced adhesion, granule release, or IL-6 production, and that ADAP-deficient mice produce a normal passive systemic anaphylactic response. Thus, failure to bind ADAP does not underlie the functional defects exhibited by SLP-76 SH2 domain mutant-expressing mast cells.  相似文献   

11.
Little is known about the role of the Gads (GrpL) adaptor protein in mature T cell populations. In this study we show that the effects of Gads deficiency on murine CD4(+) and CD8(+) T cells are markedly different. Gads(-/-) CD4(+) T cells were markedly deficient in the spleen and had an activated phenotype and a rapid turnover rate. When transferred into a wild-type host, Gads(-/-) CD4(+) T cells continued to proliferate at a higher rate than wild-type CD4(+) T cells, demonstrating a defect in homeostatic proliferation. Gads(-/-) CD8(+) T cells had a memory-like phenotype, produced IFN-gamma in response to ex vivo stimulation, and underwent normal homeostatic proliferation in wild-type hosts. Gads(-/-) T cells had defective TCR-mediated calcium responses, but had normal activation of ERK. Gads(-/-) CD4(+) T cells, but not CD8(+) T cells, had a severe block of TCR-mediated proliferation and a high rate of spontaneous cell death and were highly susceptible to CD95-induced apoptosis. This suggests that the rapid turnover of Gads(-/-) CD4(+) T cells is due to a defect in cell survival. The intracellular signaling pathways that regulate homeostasis in CD4(+) and CD8(+) T cells are clearly different, and the Gads adaptor protein is critical for homeostasis of CD4(+) T cells.  相似文献   

12.
The human colorectal epithelium is maintained by multipotent stem cells that give rise to absorptive, mucous, and endocrine lineages. Recent evidence suggests that human colorectal cancers are likewise maintained by a minority population of so-called cancer stem cells. We have previously established a human colorectal cancer cell line with multipotent characteristics (HRA-19) and developed a serum-free medium that induces endocrine, mucous and absorptive lineage commitment by HRA-19 cells in vitro. In this study, we investigate the role of the beta1 integrin family of cell surface extracellular matrix receptors in multilineage differentiation by these multipotent human colorectal cancer cells. We show that endocrine and mucous lineage commitment is blocked in the presence of function-blocking antibodies to beta1 integrin. Function-blocking antibodies to alpha2 integrin also blocked both HRA-19 endocrine lineage commitment and enterocytic differentiation by Caco-2 human colon cancer cells; both effects being abrogated by the MEK inhibitor, PD98059, suggesting a role for ERK signaling in alpha2-mediated regulation of colorectal cancer cell differentiation. To further explore the role of alpha2 integrin in multilineage differentiation, we established multipotent cells expressing high levels of wild-type alpha2 integrin or a non-signaling chimeric alpha2 integrin. Overexpression of wild-type alpha2 integrin in HRA-19 cells significantly enhanced endocrine and mucous lineage commitment, while cells expressing the non-signaling chimeric alpha2 integrin had negligible ability for either endocrine or mucous lineage commitment. This study indicates that the collagen receptor alpha2beta1 integrin is a regulator of cell fate in human multipotent colorectal cancer cells.  相似文献   

13.
c-Src plays a crucial role in osteoclastogenesis. In this study, we searched for c-Src-binding proteins using a combination of pull-down assays and mass spectrometric analysis, and identified the association of adhesion and degranulation promoting adaptor protein (ADAP) with c-Src in RAW264 cells and osteoclast precursors prepared from bone marrow cells. The kinase activity and the SH2 domain of c-Src were required for this association and Tyr807 in the extreme carboxyl terminus of ADAP was identified as a major recognition site. ADAP was found to be expressed in cells at the prefusion stage and localized mainly in the leading edge of lamellipodia and in pseudopodia. Tyrosine phosphorylation of ADAP was induced in an integrin-dependent manner, and the level was Src kinase-dependent. ADAP-knockdown RAW264 cells showed retarded migration and formed few multinucleated cells. Cas, known to be phosphorylated by c-Src, was identified as a major tyrosine-phosphorylated protein in differentiating RAW264 cells and the phosphorylation appeared to be decreased in ADAP-knockdown cells. ADAP thus may play an important role as a partner of c-Src for cell migration and progression to the multinucleated cell stage in osteoclastogenesis in vitro.  相似文献   

14.
15.
Myogenesis in vitro involves myoblast cell cycle arrest, migration, and fusion to form multinucleated myotubes. Extracellular matrix (ECM) integrity during these processes is maintained by the opposing actions of matrix metalloproteinase (MMP) proteases and their inhibitors, the tissue inhibitor of metalloproteinases (TIMPs). Here, we report that TIMP-2, MMP-2, and MT1-MMP are differentially expressed during mouse myoblast differentiation in vitro. A specific role for TIMP-2 in myogenesis is demonstrated by altered TIMP-2(-/-) myotube formation. When differentiated in horse serum-containing medium, TIMP-2(-/-) myotubes are larger than wild-type myotubes. In contrast, when serum-free medium is used, TIMP-2(-/-) myotubes are smaller than wild-type myotubes. Regardless of culture condition, myotube size is directly correlated with MMP activity and inversely correlated with beta1 integrin expression. Treatment with recombinant TIMP-2 rescues reduced TIMP-2(-/-) myotube size and induces increased MMP-9 activation and decreased beta1 integrin expression. Treatment with either MMP-2 or MMP-9 similarly rescues reduced myotube size, but has no effect on beta1 integrin expression. These data suggest a specific regulatory relationship between TIMP-2 and beta1 integrin during myogenesis. Elucidating the role of TIMP-2 in myogenesis in vitro may lead to new therapeutic options for the use of TIMP-2 in myopathies and muscular dystrophies in vivo.  相似文献   

16.
Integrin alpha(IIb)beta(3) activation is critical for platelet physiology and is controlled by signal transduction through kinases and phosphatases. Compared with kinases, a role for phosphatases in platelet integrin alpha(IIb)beta(3) signaling is less understood. We report that the catalytic subunit of protein phosphatase 2A (PP2Ac) associates constitutively with the integrin alpha(IIb)beta(3) in resting platelets and in human embryonal kidney 293 cells expressing alpha(IIb)beta(3). The membrane proximal KVGFFKR sequence within the cytoplasmic domain of integrin alpha(IIb) is sufficient to support a direct interaction with PP2Ac. Fibrinogen binding to alpha(IIb)beta(3) during platelet adhesion decreased integrin-associated PP2A activity and increased the phosphorylation of a PP2A substrate, vasodilator associated phosphoprotein. Overexpression of PP2Ac(alpha) in 293 cells decreased alpha(IIb)beta(3)-mediated adhesion to immobilized fibrinogen. Conversely, small interference RNA mediated knockdown of endogenous PP2Ac(alpha) expression in 293 cells, enhanced extracellular signal-regulated kinase (ERK1/2) and p38 activation, and accelerated alpha(IIb)beta(3) adhesion to fibrinogen and von Willebrand factor. Inhibition of ERK1/2, but not p38 activation, abolished the increased adhesiveness of PP2Ac (alpha)-depleted 293 cells to fibrinogen. Furthermore, knockdown of PP2A(calpha) expression in bone marrow-derived murine megakaryocytes increased soluble fibrinogen binding induced by protease-activated receptor 4-activating peptide. These studies demonstrate that PP2Ac (alpha) can negatively regulate integrin alpha(IIb)beta(3) signaling by suppressing the ERK1/2 signaling pathway.  相似文献   

17.
Protein kinase C (PKC) has been implicated in integrin-mediated spreading and migration. In mammary epithelial cells there is a partial co-localization between beta1 integrin and PKCalpha. This reflects complexes between these proteins as demonstrated by fluorescense resonance energy transfer (FRET) monitored by fluorescence lifetime imaging microscopy and also by coprecipitation. Constitutive complexes are observed for the intact PKCalpha and also form with the regulatory domain in an activation-dependent manner. Expression of PKCalpha causes upregulation of beta1 integrin on the cell surface, whereas stimulation of PKC induces internalization of beta1 integrin. The integrin initially traffics to an endosomal compartment in a Ca(2+)/PI 3-kinase/dynamin I-dependent manner and subsequently enters an endocytic recycling pathway. This induction of endocytosis by PKCalpha is a function of activity and is not observed for the regulatory domain. PKCalpha, but not PKCalpha regulatory domain expression stimulates migration on beta1 integrin substrates. This PKCalpha-enhanced migratory response is inhibited by blockade of endocytosis.  相似文献   

18.
Ger M  Zitkus Z  Valius M 《Cellular signalling》2011,23(10):1651-1658
Adaptor protein Nck1 binds a number of intracellular proteins and influences various signaling pathways. Here we show that Nck1 directly binds and activates the GTPase-activating protein of Ras (RasGAP), which is responsible for the down-regulation of Ras. The first and the third SH3 domains of Nck1 and the NH2-terminal proline-rich sequence of RasGAP contribute most to the complex formation causing direct molecular interaction between the two proteins. Cell adhesion to the substrate is obligatory for the Nck1 and RasGAP association, as cell detachment makes RasGAP incapable of associating with Nck1. This leads to the complex dissipation, decrease of RasGAP activity and the increase of H-Ras-GTP level in the detached cells. Our findings reveal unexpected feature of adaptor protein Nck1 as the regulator of RasGAP activity.  相似文献   

19.
Li J  Mayne R  Wu C 《The Journal of cell biology》1999,147(7):1391-1398
Myogenesis is regulated by cell adhesion receptors, including integrins of the beta1 family. We report the identification of a novel muscle-specific beta1 integrin binding protein (MIBP). MIBP binds to the membrane-proximal cytoplasmic region shared by beta1A and beta1D integrins, and the binding occurs in vivo as well as in vitro. Furthermore, we show that MIBP is abundantly expressed by C2C12 myogenic cells before fusion, and the expression of MIBP is dramatically downregulated during subsequent differentiation. Finally, we show that overexpression of MIBP in C2C12 cells resulted in a suppression of fusion and terminal differentiation, suggesting that MIBP may play a key role in controlling the progression of muscle differentiation.  相似文献   

20.
Endothelial cells from human umbilical vein (HEC) express several distinct integrin complexes that mediate the interaction with the basal membrane components. In this paper we show that treatment with tumor necrosis factor alpha (TNF alpha) down-regulates the expression of the laminin receptor alpha 6.beta 1 integrin in cultured HEC. After 48 h of treatment with TNF alpha, the level of expression of the alpha 6.beta 1 complex reached 20% of the control value. The down-regulation of the alpha 6.beta 1 integrin is caused by a decreased expression of the alpha 6 subunit, whereas the synthesis of the beta 1 subunit remains constant. Northern blot analysis shows that the decreased level of alpha 6 subunit synthesis is caused by down-regulation of alpha 6 mRNA in TNF alpha-treated HEC. TNF alpha treatment does not alter the expression of alpha 2, alpha 3, and alpha 5 integrins, also present on endothelial cell surface, thus showing that this cytokine has a selective action on distinct integrin complexes. Down-regulation of alpha 6.beta 1 correlates with pronounced reduction in adhesion of TNF alpha-treated HEC to laminin, but not to fibronectin-coated culture dishes. In addition to TNF alpha, interleukin-1 beta also decreases the expression of the alpha 6.beta 1 integrin and reduces adhesion to laminin, thus suggesting that this regulation plays an important role in inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号