首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The septins constitute a family of filament-forming proteins ubiquitous in eukaryotic species. We demonstrate here that the Saccharomyces cerevisiae septin, Cdc3, is a substrate of the cell cycle regulatory cyclin-dependent kinase (Cdk), Cdc28. Two serines near the C-terminus of Cdc3 are phosphorylated in a Cdc28-dependent manner. Analysis of a mutant allele that cannot be phosphorylated at these sites revealed an effect of Cdc28 phosphorylation of Cdc3 at the time of budding. Immunofluorescence analysis of wild-type and mutant Cdc3 indicated that prevention of phosphorylation at Cdc28-dependent sites impairs the disassembly of the old septin ring, which is inherited at mitosis but which usually disappears immediately prior to assembly of a new ring. Furthermore, immunofluorescence analysis of septin ring dynamics in a G1 cyclin (Cln) mutant suggests that G1 cyclin function is required for efficient ring disassembly. Thus, phosphorylation of Cdc3 by the Cdc28 kinase at the end of G1 may facilitate initiation of a new cell cycle by promoting disassembly of the obsolete septin ring from the previous cell cycle.

Key Words

G1, Cdc3, Septin Ring, Drosophila, Cytokinesis  相似文献   

2.
The anaphase-promoting complex (APC) regulates the eukaryotic cell cycle by targeting specific proteins for proteasomal degradation. Its activity must be strictly controlled to ensure proper cell cycle progression. The co-activator proteins Cdc20 and Cdh1 are required for APC activity and are important regulatory targets. Recently, budding yeast Acm1 was identified as a Cdh1 binding partner and APC(Cdh1) inhibitor. Acm1 disappears in late mitosis when APC(Cdh1) becomes active and contains conserved degron-like sequences common to APC substrates, suggesting it could be both an inhibitor and substrate. Surprisingly, we found that Acm1 proteolysis is independent of APC. A major determinant of Acm1 stability is phosphorylation at consensus cyclin-dependent kinase sites. Acm1 is a substrate of Cdc28 cyclin-dependent kinase and Cdc14 phosphatase both in vivo and in vitro. Mutation of Cdc28 phosphorylation sites or conditional inactivation of Cdc28 destabilizes Acm1. In contrast, inactivation of Cdc14 prevents Acm1 dephosphorylation and proteolysis. Cdc28 stabilizes Acm1 in part by promoting binding of the 14-3-3 proteins Bmh1 and Bmh2. We conclude that the opposing actions of Cdc28 and Cdc14 are primary factors limiting Acm1 to the interval from G(1)/S to late mitosis and are capable of establishing APC-independent expression patterns similar to APC substrates.  相似文献   

3.
Budding yeast initiates anaphase by activating the Cdc20-dependent anaphase-promoting complex (APC). The mitotic activity of Cdc28 (Cdk1) is required to activate this form of the APC, and mutants that are impaired in mitotic Cdc28 function have difficulty leaving mitosis. This defect can be explained by a defect in APC phosphorylation, which depends on mitotic Cdc28 activity in vivo and can be catalyzed by purified Cdc28 in vitro. Mutating putative Cdc28 phosphorylation sites in three components of the APC, Cdc16, Cdc23, and Cdc27, makes the APC resistant to phosphorylation both in vivo and in vitro. The nonphosphorylatable APC has normal activity in G1, but its mitotic, Cdc20-dependent activity is compromised. These results show that Cdc28 activates the APC in budding yeast to trigger anaphase. Previous reports have shown that the budding yeast Cdc5 homologue, Plk, can also phosphorylate and activate the APC in vitro. We show that, like cdc28 mutants, cdc5 mutants affect APC phosphorylation in vivo. However, although Cdc5 can phosphorylate Cdc16 and Cdc27 in vitro, this in vitro phosphorylation does not occur on in vivo sites of phosphorylation.  相似文献   

4.
The ubiquitin ligase activity of the anaphase-promoting complex (APC)/cyclosome needs to be tightly regulated for proper cell cycle progression. Substrates are recruited to the APC by the Cdc20 and Cdh1 accessory proteins. The Cdh1-APC interaction is inhibited through phosphorylation of Cdh1 by Cdc28, the major cyclin-dependent protein kinase in budding yeast. More recently, Acm1 was reported to be a Cdh1-binding and -inhibitory protein in budding yeast. We found that although Acm1 is an unstable protein and contains the KEN-box and D-box motifs typically found in APC substrates, Acm1 itself is not an APC substrate. Rather, it uses these motifs to compete with substrates for Cdh1 binding, thereby inhibiting their recruitment to the APC. Mutation of these motifs prevented Acm1-Cdh1 binding in vivo and rendered Acm1 inactive both in vitro and in vivo. Acm1 stability was critically dependent on phosphorylation by Cdc28, as Acm1 was destabilized following inhibition of Cdc28, mutation of consensus Cdc28 phosphorylation sites in Acm1, or deletion of the Bmh1 and Bmh2 phosphoprotein-binding proteins. Thus, Cdc28 serves dual roles in inhibiting Cdh1-dependent APC activity during the cell cycle: stabilization of the Cdh1 inhibitor Acm1 and direct phosphorylation of Cdh1 to prevent its association with the APC.  相似文献   

5.
In the yeast Saccharomyces cerevisiae, the Cdc28 protein kinase controls commitment to cell division at Start, but no biologically relevant G1-phase substrates have been identified. We have studied the kinase complexes formed between Cdc28 and each of the G1 cyclins Cln1, Cln2, and Cln3. Each complex has a specific array of coprecipitated in vitro substrates. We identify one of these as Far1, a protein required for pheromone-induced arrest at Start. Treatment with alpha-factor induces a preferential association and/or phosphorylation of Far1 by the Cln1, Cln2, and Cln3 kinase complexes. This induced interaction depends upon the Fus3 protein kinase, a mitogen-activated protein kinase homolog that functions near the bottom of the alpha-factor signal transduction pathway. Thus, we trace a path through which a mitogen-activated protein kinase regulates a Cdc2 kinase.  相似文献   

6.
7.
Hog1 of Saccharomyces cerevisiae is activated by hyperosmotic stress, and this leads to cell-cycle delay in G1, but the mechanism by which cells restart from G1 delay remains elusive. We found that Whi3, a negative regulator of G1 cyclin, counteracted Hog1 in the restart from G1 delay caused by osmotic stress. We have found that phosphorylation of Ser-568 in Whi3 by RAS/cAMP-dependent protein kinase (PKA) plays an inhibitory role in Whi3 function. In this study we found that the phosphomimetic Whi3 S568D mutant, like the Δwhi3 strain, slightly suppressed G1 delay of Δhog1 cells under osmotic stress conditions, whereas the non-phosphorylatable S568A mutation of Whi3 caused prolonged G1 arrest of Δhog1 cells. These results indicate that Hog1 activity is required for restart from G1 arrest under osmotic stress conditions, whereas Whi3 acts as a negative regulator for this restart mechanism.  相似文献   

8.
《Molecular cell》2014,53(4):549-561
  1. Download : Download high-res image (196KB)
  2. Download : Download full-size image
  相似文献   

9.
In the budding yeast Saccharomyces cerevisiae, Cdc37 is required for the productive formation of Cdc28-cyclin complexes. The cdc37-1 mutant arrests at Start with low levels of Cdc28 protein, which is predominantly unphosphorylated at Thr169, fails to bind cyclin, and has little protein kinase activity. We show here that Cdc28 and not cyclin is specifically defective in the cdc37-1 mutant and that Cdc37 likely does not act as an assembly factor for Cdc28-cyclin complex formation. We have also found that the levels and activity of the protein kinase Cak1 are significantly reduced in the cdc37-1 mutant. Pulse-chase analysis indicates that Cdc28 and Cak1 proteins are both destabilized when Cdc37 function is absent during but not after translation. In addition, Cdc37 promotes the production of Cak1, but not that of Cdc28, when coexpressed in insect cells. We conclude that budding yeast Cdc37, like its higher eukaryotic homologs, promotes the physical integrity of multiple protein kinases, perhaps by virtue of a cotranslational role in protein folding.  相似文献   

10.
Ectopic expression of Cdc6p results in mitotic delay, and this has been attributed to Cdc6p-mediated inhibition of Cdc28 protein kinase and failure to activate the anaphase-promoting complex (APC). Here we show that endogenous Cdc6p delays a specific subset of mitotic events and that Cdc28 inhibition is not sufficient to account for it. The depletion of Cdc6p in G(2)/M cells reveals that Cdc6p is rate limiting for the degradation of the APC/Cdc20 substrates Pds1p and Clb2p. Conversely, the premature expression of Cdc6p delays the degradation of APC/Cdc20 substrates. Abolishing Cdc6p/Cdc28p interaction does not eliminate the Cdc6-dependent delay of these anaphase events. To identify additional Cdc6-mediated, APC-inhibitory mechanisms, we looked for mutants that reversed the mitotic delay. The deletion of SWE1, RAD24, MAD2, or BUB2 had no effect. However, disrupting CDC55, a PP2A regulatory subunit, suppressed the Cdc6p-dependent delay of Pds1 and Clb2 destruction. A specific role for CDC55 was supported by demonstrating that the lethality of Cdc6 ectopic expression in a cdc16-264 mutant is suppressed by the deletion of CDC55, that endogenous Cdc6p coimmunoprecipitates with the Cdc55 and Tpd3 subunits of PP2A, that Cdc6p/Cdc55p/Tpd3 interaction occurs only during mitosis, and that Cdc6 affects PP2A-Cdc55 activity during anaphase. This demonstrates that the levels and timing of accumulation of Cdc6p in mitosis are appropriate for mediating the modulation of APC/Cdc20.  相似文献   

11.
BACKGROUND: Exit from mitosis requires inactivation of mitotic cyclin-dependent kinases (CDKs). A key mechanism of CDK inactivation is ubiquitin-mediated cyclin proteolysis, which is triggered by the late mitotic activation of a ubiquitin ligase known as the anaphase-promoting complex (APC). Activation of the APC requires its association with substoichiometric activating subunits termed Cdc20 and Hct1 (also known as Cdh1). Here, we explore the molecular function and regulation of the APC regulatory subunit Hct1 in Saccharomyces cerevisiae. RESULTS: Recombinant Hct1 activated the cyclin-ubiquitin ligase activity of APC isolated from multiple cell cycle stages. APC isolated from cells arrested in G1, or in late mitosis due to the cdc14-1 mutation, was more responsive to Hct1 than APC isolated from other stages. We found that Hct1 was phosphorylated in vivo at multiple CDK consensus sites during cell cycle stages when activity of the cyclin-dependent kinase Cdc28 is high and APC activity is low. Purified Hct1 was phosphorylated in vitro at these sites by purified Cdc28-cyclin complexes, and phosphorylation abolished the ability of Hct1 to activate the APC in vitro. The phosphatase Cdc14, which is known to be required for APC activation in vivo, was able to reverse the effects of Cdc28 by catalyzing Hct1 dephosphorylation and activation. CONCLUSIONS: We conclude that Hct1 phosphorylation is a key regulatory mechanism in the control of cyclin destruction. Phosphorylation of Hct1 provides a mechanism by which Cdc28 blocks its own inactivation during S phase and early mitosis. Following anaphase, dephosphorylation of Hct1 by Cdc14 may help initiate cyclin destruction.  相似文献   

12.
13.
14.
Tom1 (target of Myb 1) and its related proteins (Tom1L1/Srcasm and Tom1L2) constitute a protein family and share an N-terminal VHS (Vps27p/Hrs/Stam) domain and a following GAT (GGA and Tom1) domain, both of which are also conserved in the GGA family proteins. However, the C-terminal half is not significantly conserved between the Tom1 and GGA families or even between Tom1 and Tom1L1. We have previously shown that the GAT domain of Tom1 interacts with Tollip (Toll-interacting protein), which is associated with endosomes, to which it recruits Tom1. We here extend the previous data and show that the GAT domains of Tom1L1 and Tom1L2 also interact with Tollip, and the C-terminal regions of all the Tom1 family proteins interact with clathrin. Furthermore, when coexpressed with Tollip, all the Tom1 family proteins recruite clathrin onto endosomes. These results indicate that, in conjunction with Tollip, Tom1 family proteins play an important role in recruiting clathrin onto endosomes and suggest that they modulate endosomal functions.  相似文献   

15.
16.
17.
18.
To prevent aneuploidy, cells require a mitotic surveillance mechanism, the spindle assembly checkpoint (SAC). The SAC prevents metaphase/anaphase transition by blocking the ubiquitylation and destruction of cyclin B and securin via the Cdc20-activated anaphase-promoting complex or cyclosome (APC/C)-mediated proteolysis pathway. This checkpoint involves the kinetochore proteins Mad2, BubR1, and Cdc20. Mad2 and BubR1 are inhibitors of the APC/C, but Cdc20 is an activator. Exactly how the SAC regulates Cdc20 via unattached kinetochores remains unclear; in vertebrates, most current models suggest that kinetochore-bound Mad2 is required for initial binding to Cdc20 to form a stable complex that includes BubR1. Here, we show that the Mad2 kinetochore dimerization recruitment mechanism is conserved and that the recruitment of Cdc20 to kinetochores in Drosophila requires BubR1 but not Mad2. BubR1 and Mad2 can bind to Cdc20 independently, and the interactions are enhanced after cells are arrested at mitosis by the depletion of Cdc27 using RNA interference (RNAi) in S2 cells or by MG132 treatment in syncytial embryos. These findings offer an explanation of why BubR1 is more important than Mad2 for SAC function in flies. These findings could lead to a better understanding of vertebrate SAC mechanisms.The spindle assembly checkpoint (SAC) is a mitotic surveillance mechanism that negatively regulates the activation of the anaphase-promoting complex or cyclosome (APC/C)-mediated proteolysis pathway to prevent the destruction of two key substrates, cyclin B and securin, thereby inhibiting the metaphase-to-anaphase transition until bipolar attachment of all chromosomes has been achieved (35). A number of conserved kinetochore proteins have been identified as SAC components, such as Mad1, Mad2, Bub1, BubR1, Bub3, Mps1, Zw10, and Rod and Aurora B kinase (reviewed by Musacchio and Salmon [35]). In vertebrates, it is believed that a diffusible inhibitory “wait anaphase” signal is generated from unattached kinetochores or lack of spindle tension (27, 45, 47) and that its primary target is Cdc20/Fzy (Fzy is the Drosophila Cdc20 homolog that we refer to as Cdc20 here), which is an essential APC/C activator (35). Mad2, BubR1 (Mad3 in Saccharomyces cerevisiae), Bub3, and Cdc20 have been found in the mitotic checkpoint complex (MCC) or its subcomplexes Bub3-BubR1-Cdc20 and Mad2-Cdc20 (42, 50, 56). Kinetochore-dependent recruitment and activation of Mad2 have been illustrated in a “template” model (12) and later a modified “two-state” model (28, 32, 35, 36, 40, 57). This model suggests that a kinetochore-bound and conformationally rearranged Mad2 is required for Cdc20 binding and that it leads to the formation of the Mad2-Cdc20 complex (8, 9, 12, 16, 48, 49). This is further supported by a more recent report that unattached kinetochores from purified HeLa cell chromosomes can catalytically generate a diffusible Cdc20 inhibitor when presented with kinetochore-bound Mad2 and that these purified chromosomes can also promote BubR1 binding to APC/C-Cdc20 by acting directly on Mad2 but not BubR1 (27). In vitro assays also suggest that Mad2 is required for Cdc20 binding to BubR1 (7, 10, 19). Fluorescence recovery after photobleaching analysis has suggested that the ∼50% of green fluorescent protein (GFP)-Cdc20 that associates with slow-phase kinetics on PtK2 cell kinetochores is Mad2 dependent (22). However, contradictory reports also exist to suggest that Mad2 might not be required for Cdc20 kinetochore localization in Xenopus and PtK2 cells (22) and that BubR1 might play a crucial role for this in human cell lines (33). In contrast to the above-mentioned slow-phase GFP-Cdc20, the remaining ∼50% of GFP-Cdc20 that associates with fast kinetics on prometaphase or metaphase kinetochores is Mad2 independent, and its kinetics parallel those of GFP-BubR1 in PtK2 cells. GFP-Cdc20 is still detectable on kinetochores through anaphase, where both Mad2 and BubR1 are greatly reduced (22, 25). Moreover, the direct requirement for the kinetochore in the formation of the SAC-inhibitory complexes has been challenged by a non-kinetochore-based formation hypothesis, with MCC found to be present in HeLa cells during S phase (50) and complex formation in yeast previously shown to be independent of intact kinetochores (17, 43). Therefore, despite the importance of Cdc20 in understanding SAC mechanisms, exactly how the SAC regulates Cdc20 via unattached kinetochores remains unclear in vertebrates.Drosophila melanogaster is a well-established model used to study the spindle assembly checkpoint (2, 3, 6, 39). More recently, phenotypes of two mad2-null Drosophila mutant alleles, mad2Δ and mad2P, have been characterized, showing that Mad2 protein is not essential for normal mitotic progression but remains essential for SAC when microtubule attachment, chromosome alignment, and congression are abnormal (5). This contrasts with its counterpart in mouse and human (14, 34, 54) and is also different from the lethality phenotypes reported for bubR1 and cdc20 mutations in Drosophila (3, 11). It has also been reported that Mad2 is less important for SAC than BubR1 and that it is regulated differently in Drosophila S2 culture cells (39). These observations led to the tentative conclusion that Drosophila Mad2 may possess different kinetochore molecular mechanisms and function differently from its homologs in mouse and human (14, 34, 54, 58). We therefore tested Mad2 kinetochore function and further investigated the mechanisms required for Cdc20 kinetochore recruitment and localization using Drosophila transgenic and mutant lines, as well as culture cells. We have characterized a new mad2-null mutant allele, mad2EY, and demonstrated that Drosophila possesses a highly conserved Mad2 kinetochore dimerization mechanism required for SAC function. However, Mad2 is not required for Cdc20 kinetochore recruitment and localization. Instead, there is an essential role for BubR1 in this mechanism during normal mitosis and SAC activation.  相似文献   

19.
Sodium butyrate (6 mM) blocks the resumption of the cell division cycle in serum-deprived chemically transformed Balb/c-3T3 mouse fibroblasts (BP-A31). The inhibition of G1 progression by sodium butyrate is not restricted to a specific mitogenic signaling pathway and is equally effective when tetradecanoyl phorbol acetate (TPA), insulin, or fetal calf serum (FCS) is used as inducer. The inhibitor acts in early as well as late G1 phase as indicated by experiments in which inhibitor was added and withdrawn at different times after restimulation of quiescent cells by FCS. At the gene expression level, sodium butyrate does not affect the inducibility of early cell cycle-related genes (c-myc, c-jun) while blocking the induction of cdc 2 mRNA, a late G1 marker. We conclude that sodium butyrate does not interfere with the growth factor signaling pathways regulating the (early) cell cycle-related gene expression. However, the presence of sodium butyrate early in G1 phase inhibits the cascade of events leading eventually to the expression of late G1-characteristic genes such as cdc2. The antimitogenic activity of sodium butyrate may be related to its interference with an (unknown) process involved in the "mitogenic" cascade.  相似文献   

20.
Septins are a family of eukaryotic guanosine phosphate-binding proteins that form linear heterooligomeric complexes, which, in turn, polymerize end-on-end into filaments. These filaments further assemble into higher-order structures at distinct subcellular locations. Dynamic changes in the organization of septin cortex structures appear during cell cycle progression. A variety of regulatory proteins and posttranslational modifications are involved in changes to the structure of septin assemblies during the entire cell cycle. In particular, septin-associated protein kinases mediate changes to septin higher order structures or interconnect cellular morphogenesis with the cell cycle. Yeast cyclin-dependent kinase, a master cell cycle regulator, is required for the initiation of a new septin ring. Here, using epifluoresence and electron microscopy, we show that upon phosphorylation by the Cdc28 kinase, septin filaments disassemble into hetero-octameric building blocks, and that filament depolymerization is specifically G1 cyclin-dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号