首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Inhibition of the RelA(p65) NF-kappaB subunit by Egr-1   总被引:9,自引:0,他引:9  
  相似文献   

3.
To test the genetic capacity of the perinatal lung to respond to O(2) shifts that coincide with the first respiratory movements, rat fetal alveolar type II (fATII) epithelial cells were cultured at fetal distal lung PO(2) (23 Torr) and then exposed to postnatal (23 --> 76 Torr; mild hyperoxic shift), moderate (23 --> 152 Torr; moderate hyperoxic shift), or severe (23 --> 722 Torr; severe hyperoxic shift) oxygenation. Nuclear abundance and consensus binding characteristics of hypoxia-inducible factor (HIF)-1alpha and nuclear factor (NF)-kappaB (Rel A/p65) plus glutathione biosynthetic capacity were determined. Maximal HIF-1alpha activation at 23 Torr was sustained over the postnatal shift in (Delta) PO(2) and was elevated in vivo throughout late gestation. NF-kappaB was activated by the acute postnatal DeltaPO(2) in fATII cells, becoming maximal with moderate and severe oxygenation in vitro and within 6 h of birth in vivo, declining thereafter. fATII cell and whole lung glutathione and GSH-to-GSSG ratio increased fourfold with a postnatal DeltaPO(2) and were matched by threefold activity increases in gamma-glutamylcysteine synthetase and glutathione synthase. GSH concentration depletion by L-buthionine-(S, R)-sulfoximine abrogated both HIF-1alpha and NF-kappaB activation, with HIF-1alpha showing a heightened sensitivity to GSH concentration. We conclude that O(2)-linked genetic regulation in perinatal lung epithelium is responsive to developmental changes in glutathione biosynthetic capacity.  相似文献   

4.
5.
6.
Regulation of NF-kappaB transactivation function is controlled at several levels, including interactions with coactivator proteins. Here we show that the transactivation function of NF-kappaB is also regulated through interaction of the p65 (RelA) subunit with histone deacetylase (HDAC) corepressor proteins. Our results show that inhibition of HDAC activity with trichostatin A (TSA) results in an increase in both basal and induced expression of an integrated NF-kappaB-dependent reporter gene. Chromatin immunoprecipitation (ChIP) assays show that TSA treatment causes hyperacetylation of the wild-type integrated NF-kappaB-dependent reporter but not of a mutant version in which the NF-kappaB binding sites were mutated. Expression of HDAC1 and HDAC2 repressed tumor necrosis factor (TNF)-induced NF-kappaB-dependent gene expression. Consistent with this, we show that HDAC1 and HDAC2 target NF-kappaB through a direct association of HDAC1 with the Rel homology domain of p65. HDAC2 does not interact with NF-kappaB directly but can regulate NF-kappaB activity through its association with HDAC1. Finally, we show that inhibition of HDAC activity with TSA causes an increase in both basal and TNF-induced expression of the NF-kappaB-regulated interleukin-8 (IL-8) gene. Similar to the wild-type integrated NF-kappaB-dependent reporter, ChIP assays showed that TSA treatment resulted in hyperacetylation of the IL-8 promoter. These data indicate that the transactivation function of NF-kappaB is regulated in part through its association with HDAC corepressor proteins. Moreover, it suggests that the association of NF-kappaB with the HDAC1 and HDAC2 corepressor proteins functions to repress expression of NF-kappaB-regulated genes as well as to control the induced level of expression of these genes.  相似文献   

7.
The characterization of oxidant (glutathione)-dependent regulation of MAPKp38/RK-mediated TNF-α secretion was undertaken in vitro, and the ramifications of the influence of a redox microenvironment were unraveled. Intermittent exposure of alveolar epithelial cells (FATEII) to LPS (endotoxin) transiently and temporally induced the expression of MAPKp38/RK. This upregulation was associated with the activation of MAPKAP-K2, manifested by the specific phosphorylation of the downstream heat-shock protein (Hsp)-27. Selective blockading of the MAPKp38/RK pathway using the pyridinyl imidazole SB-203580 abrogated the LPS-dependent release of TNF-α. N-acetyl-l-cysteine (NAC), a precursor of glutathione, reduced TNF-α secretion and increased [GSH]. Conversely, l-buthionine-(S,R)-sulfoximine (BSO), an irreversible inhibitor of γ-glutamylcysteine synthetase (γ-GCS), the rate-limiting enzyme in the pathway mediating GSH biosynthesis, augmented the secretion of TNF-α and [GSSG] accumulation. Whereas NAC abrogated the phosphorylation of MAPKp38/RK, BSO reversibly amplified this effect. Furthermore, intermittent exposure of FATEII cells to the exogenous oxidants X/XO and H2O2 upregulated the secretion of pro-inflammatory cytokines IL-1β, IL-6 and TNF-α; this upregulation was correlated with increasing activity of key glutathione-related enzymes, closely involved with maintaining the cyclic GSH/GSSG equilibrium. These results indicate that a redox microenvironment plays a major role in regulating MAPK-dependent production of cytokines in the alveolar epithelium.  相似文献   

8.
Fas-associated factor-1 (FAF1) is a Fas-binding pro-apoptotic protein that is a component of the death-inducing signaling complex in Fas-mediated apoptosis. Here, we show that FAF1 is involved in negative regulation of NF-kappaB activation. Overexpression of FAF1 decreased the basal level of NF-kappaB activity in 293 cells. NF-kappaB activation induced by tumor necrosis factor (TNF)-alpha, interleukin-1beta, and lipopolysaccharide was also inhibited by FAF1 overexpression. Moreover, FAF1 suppressed NF-kappaB activation induced by transducers of diverse NF-kappaB-activating signals such as TNF receptor-associated factor-2 and -6, MEKK1, and IkappaB kinase-beta as well as NF-kappaB p65, one of the end point molecules in the NF-kappaB activation pathway, suggesting that NF-kappaB p65 might be a target molecule upon which FAF1 acts. Subsequent study disclosed that FAF1 physically interacts with NF-kappaB p65 and that the binding domain of FAF1 is the death effector domain (DED)-interacting domain (amino acids 181-381), where DEDs of the Fas-associated death domain protein and caspase-8 interact. The NF-kappaB activity-modulating potential of FAF1 was also mapped to the DED-interacting domain. Finally, overexpression of FAF1 prevented translocation of NF-kappaB p65 into the nucleus and decreased its DNA-binding activity upon TNFalpha treatment. This study presents a novel function of FAF1, in addition to the previously known function as a component of the Fas death-inducing signaling complex, i.e. NF-kappaB activity suppressor by cytoplasmic retention of NF-kappaB p65 via physical interaction.  相似文献   

9.
Tumor necrosis factor-alpha (TNF) induces apoptosis in confluent LLC-PK1 epithelial cells, but also activates NF-kappaB, a negative regulator of apoptosis. The presence of increased TNF-induced apoptosis causes a transient increase in epithelial permeability, but the epithelial barrier function recovers, as assessed by measuring the transepithelial electrical resistance, the paracellular flux of mannitol and by the electron microscopic evaluation of the penetration of the electron-dense dye ruthenium red across the tight junctions. The integrity of the epithelial cell layer is maintained by rearrangement of non-apoptotic cells in the monolayer and by the phagocytosis of apoptotic fragments. To study the role of NF-kappaB in an epithelium exposed to TNF, NF-kappaB was inhibited in LLC-PK1 epithelial cells with either the dietary compound, curcumin, or by transfection with a dominant negative mutant inhibitor I kappaB alpha. Replacement of serine 32 and 36 by alanine has been shown to prevent its phosphorylation and degradation, blocking NF-kappaB activation. Inhibition of NF-kappaB altered the morphology of TNF-induced apoptotic cells, which showed lack of fragmentation and membrane blebbings, and absence of phagocytosis by neighboring cells. TNF treatment of NF-kappaB-inhibited cells also caused altered distribution of the tight junction-associated protein ZO-1, increased epithelial leakiness, and impaired the recovery of the epithelial barrier function, which normally occurs 6 hours after TNF treatment of LLC-PK1 cells. These data demonstrate that NF-kappaB activation is required for the maintenance of the barrier function of an epithelium undergoing TNF-induced apoptosis.  相似文献   

10.
Human cystathionine beta-synthase (CBS) is a unique pyridoxal-5'-phosphate-dependent enzyme in which heme is also present as a cofactor. Because the function of heme in this enzyme has yet to be elucidated, the study presented herein investigated possible relationships between the chemistry of the heme and the strong pH dependence of CBS activity. This study revealed, via study of a truncation variant, that the catalytic core of the enzyme governs the pH dependence of the activity. The heme moiety was found to play no discernible role in regulating CBS enzyme activity by sensing changes in pH, because the coordination sphere of the heme is not altered by changes in pH over a range of pH 6-9. Instead, pH was found to control the equilibrium amount of ferric and ferrous heme present after reaction of CBS with one-electron reducing agents. A variety of spectroscopic techniques, including resonance Raman, magnetic circular dichroism, and electron paramagnetic resonance, demonstrated that at pH 9 Fe(II) CBS is dominant while at pH 6 Fe(III) CBS is favored. At low pH, Fe(II) CBS forms transiently but reoxidizes by an apparent proton-gated electron-transfer mechanism. Regulation of CBS activity by the iron redox state has been proposed as the role of the heme moiety in this enzyme. Given that the redox behavior of the CBS heme appears to be controlled by pH, interplay of pH and oxidation state effects must occur if CBS activity is redox regulated.  相似文献   

11.
12.
13.
14.
15.
Integrity of the airway epithelium (AE) is important in the context of inhaled allergens and noxious substances, particularly during asthma-related airway inflammation where there is increased vulnerability of the AE to cell death. Apoptosis involves a number of signaling pathways which activate procaspases leading to cleavage of critical substrates. Understanding the factors which regulate AE caspases is important for development of strategies to minimize AE damage and airway inflammation, and therefore to better control asthma. One such factor is the essential dietary metal zinc. Zinc deficiency results in enhanced AE apoptosis, and worsened airway inflammation. This has implications for asthma, where abnormalities in zinc homeostasis have been observed. Zinc is thought to suppress the steps involved in caspase-3 activation. One target of zinc is the family of inhibitor of apoptosis proteins (IAPs) which are endogenous regulators of caspases. More studies are needed to identify the roles of IAPs in regulating apoptosis in normal and inflamed airways and to study their interaction with labile zinc ions. This new information will provide a framework for future clinical studies aimed at monitoring and management of airway zinc levels as well as minimising airway damage and inflammation in asthma.  相似文献   

16.
17.
The activity of many RNases requires the formation of one or more disulfide bonds which can contribute to their stability. In this study, we show that RNase activity and, to a much lesser extent, nuclease activity, are redox regulated. Intracellular RNase activity was altered in vitroby changes in the glutathione redox state. Moreover, RNase activity was abolished following exposure to reducing agents such as -ME or DTT. Following reduction with glutathione (GSH), RNase activity could be fully reactivated with oxidized glutathione (GSSG). In contrast, RNase activity could not be reactivated when reduced with DTT. Decreasing the level of glutathione in vivoin wheat increased RNase activity. Tobacco engineered to have an increased glutathione redox state exhibited substantially lower RNase activity during dark-induced senescence. These results suggest that RNase activity requires the presence of one or more disulfide bonds that are regulated by glutathione and demonstrate for the first time that RNase activity can be altered with an alteration in cellular redox state.  相似文献   

18.
Bile salts induce apoptosis and are implicated as promoters of colon cancer. The mechanisms by which bile salts produce these effects are poorly understood. We report that the cytotoxic bile salt, sodium deoxycholate (NaDOC), activates the key stress response proteins, NF-kappaB and poly(ADP-ribose) polymerase (PARP). The activation of NF-kappaB and PARP, respectively, indicates that bile salts induce oxidative stress and DNA damage. The pre-treatment of cells with specific inhibitors of these proteins [pyrrolidine dithiocarbamate (NF-kappaB inhibitor) and 3-aminobenzamide (PARP inhibitor)] sensitizes cells to the induction of apoptosis by NaDOC, indicating that these stress response pathways are protective in nature. Colon cancer risk has been reported to be associated with resistance to apoptosis. We found an increase in activated NF-kappaB at the base of human colon crypts that exhibit apoptosis resistance. This provides a link between an increased stress response and colon cancer risk. The implications of these findings with respect to apoptosis and to colon carcinogenesis are discussed.  相似文献   

19.
The Fas death receptor plays a key role in the killing of target cells by NK cells and CTLs and in activation-induced cell death of mature T lymphocytes. These cytotoxic pathways are dependent on induction of Fas expression by cytokines such as TNF-alpha and IFN-gamma or by signals generated after TCR engagement. Although much of our knowledge of the Fas death pathway has been generated from murine studies, little is known about regulatory mechanisms important for murine Fas expression. To this end, we have molecularly cloned a region of the murine Fas promoter that is responsible for mediating TNF-alpha and PMA/PHA-induced expression. We demonstrate here that induction of Fas expression by both stimuli is critically dependent on two sites that associate with RelA-containing NF-kappaB complexes. To determine whether RelA and/or other NF-kappaB subunits are also important for regulating Fas expression in primary T cells, we used CD4 T cells from RelA(-/-), c-Rel(-/-), and p50(-/-) mice. Although proliferative responses were significantly impaired, expression of Fas and activation-induced cell death was unaffected in T cells obtained from these different mice. Importantly, we show that unlike fibroblasts, which consist primarily of RelA-containing NF-kappaB complexes, T cells have high levels of both RelA and c-Rel complexes, suggesting that Fas expression in T cells may be dependent on redundant functions of these NF-kappaB subunits.  相似文献   

20.
The etiology of Parkinson's disease is still unknown, though current investigations support the notion of the pivotal involvement of oxidative stress in the process of neurodegeneration in the substantia nigra (SN). In the present study, we investigated the molecular mechanisms underlying cellular response to a challenge by dopamine, one of the local oxidative stressors in the SN. Based on studies showing that nuclear factor kappa B (NF-kappaB) is activated by oxidative stress, we studied the involvement of NF-kappaB in the toxicity of PC12 cells following dopamine exposure. We found that dopamine (0.1-0.5 m M) treatment increased the phosphorylation of the IkappaB protein, the inhibitory subunit of NF-kappaB in the cytoplasm. Immunoblot analysis demonstrated the presence of NF-kappaB-p65 protein in the nuclear fraction and its disappearance from the cytoplasmic fraction after 2 h of dopamine exposure. Dopamine-induced NF-kappaB activation was also evidenced by electromobility shift assay using radioactive labeled NF-kappaB consensus DNA sequence. Cell-permeable NF-kappaB inhibitor SN-50 rescued the cells from dopamine-induced apoptosis and showed the importance of NF-kappaB activation to the induction of apoptosis. Furthermore, flow cytometry assay demonstrated a higher level of translocated NF-kappaB-p65 in the apoptotic nuclei than in the unaffected nuclei. In conclusion, our findings suggest that NF-kappaB activation is essential to dopamine-induced apoptosis in PC12 cells and it may be involved in nigral neurodegeneration in patients with Parkinson's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号