首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies of the antimicrobial activity of neutrophil defensins have mostly been carried out in microbiological media, and their effects on the host defense in physiological conditions are unclear. We examined 1) the antibacterial activity of defensins in physiological media with and without lung tissue present, 2) the effect of defensins on hydrogen peroxide (H(2)O(2)) production by lung tissue that had been exposed to bacteria, and 3) the effect of diphenyleneiodonium (DPI), an inhibitor of reactive oxygen species formation, on the antibacterial activity of defensins in the presence of lung tissue. Defensins were incubated with Escherichia coli or Pseudomonas aeruginosa in the absence or presence of primary cultured mouse lung explants. Defensins reduced bacterial counts by approximately 65-fold and approximately 25-fold, respectively, at 48 h; bacterial counts were further decreased by approximately 600-fold and approximately 12,000-fold, respectively, in the presence of lung tissue. Defensins induced H(2)O(2) production by lung tissue, and the rate of killing of E. coli by defensins was reduced by approximately 2,500-fold in the presence of 10 microM DPI. We conclude that defensins exert a significant antimicrobial effect under physiological conditions and that this effect is enhanced in the presence of lung tissue by a mechanism that involves the production of reactive oxygen species.  相似文献   

2.

Background  

Salmonella enterica and Campylobacter jejuni are amongst the more prevalent bacterial pathogens that cause foodborne diseases. These microorganisms are common contaminants of poultry and poultry products. This study was aimed to evaluate the antibacterial activity of metallic copper surfaces on these important enteropathogens, and to determine the potential acquisition of copper by food exposed to this metal.  相似文献   

3.
Copper alloy surfaces are passive antimicrobial sanitizing agents that kill bacteria, fungi, and some viruses. Studies of the mechanism of contact killing in Escherichia coli implicate the membrane as the target, yet the specific component and underlying biochemistry remain unknown. This study explores the hypothesis that nonenzymatic peroxidation of membrane phospholipids is responsible for copper alloy-mediated surface killing. Lipid peroxidation was monitored with the thiobarbituric acid-reactive substances (TBARS) assay. Survival, TBARS levels, and DNA degradation were followed in cells exposed to copper alloy surfaces containing 60 to 99.90% copper or in medium containing CuSO(4). In all cases, TBARS levels increased with copper exposure levels. Cells exposed to the highest copper content alloys, C11000 and C24000, exhibited novel characteristics. TBARS increased immediately at a very rapid rate but peaked at about 30 min. This peak was associated with the period of most rapid killing, loss in membrane integrity, and DNA degradation. DNA degradation is not the primary cause of copper-mediated surface killing. Cells exposed to the 60% copper alloy for 60 min had fully intact genomic DNA but no viable cells. In a fabR mutant strain with increased levels of unsaturated fatty acids, sensitivity to copper alloy surface-mediated killing increased, TBARS levels peaked earlier, and genomic DNA degradation occurred sooner than in the isogenic parental strain. Taken together, these results suggest that copper alloy surface-mediated killing of E. coli is triggered by nonenzymatic oxidative damage of membrane phospholipids that ultimately results in the loss of membrane integrity and cell death.  相似文献   

4.
We have reported previously that copper I and II ionic species, and superoxide but not Fenton reaction generated hydroxyl radicals, are important in the killing mechanism of pathogenic enterococci on copper surfaces. In this new work we determined if the mechanism was the same in non-pathogenic ancestral (K12) and laboratory (DH5α) strains, and a pathogenic strain (O157), of Escherichia coli. The pathogenic strain exhibited prolonged survival on stainless steel surfaces compared with the other E.?coli strains but all died within 10?min on copper surfaces using a 'dry' inoculum protocol (with approximately 10(7) cfu?cm(-2) ) to mimic dry touch contamination. We observed immediate cytoplasmic membrane depolarization, not seen with enterococci or methicillin resistant Staphylococcus aureus, and loss of outer membrane integrity, inhibition of respiration and in situ generation of reactive oxygen species on copper and copper alloy surfaces that did not occur on stainless steel. Chelation of copper (I) and (II) ionic species still had the most significant impact on bacterial survival but protection by d-mannitol suggests hydroxyl radicals are involved in the killing mechanism. We also observed a much slower rate of DNA destruction on copper surfaces compared with previous results for enterococci. This may be due to protection of the nucleic acid by the periplasm and the extensive cell aggregation that we observed on copper surfaces. Similar results were obtained for Salmonella species but partial quenching by d-mannitol suggests radicals other than hydroxyl may be involved. The results indicate that copper biocidal surfaces are effective for Gram-positive and Gram-negative bacteria but bacterial morphology affects the mechanism of toxicity. These surfaces could not only help to prevent infection spread but also prevent horizontal gene transmission which is responsible for the evolution of virulent toxin producing and antibiotic resistant bacteria.  相似文献   

5.
We investigated the therapeutic efficacy of the topical antiseptic sodium hypochlorite (NaOCl) for antibacterial activity and in parallel the cytotoxicity mechanisms by which hypochlorite and the chloramines generated therefrom induce oxidative tissue damage, which further influences the wound-healing process. Human dermal fibroblasts were exposed to increasing concentrations of reagent NaOCl (0.00005-0.1%) at exposure times varying between 2 and 24 h and the protective effects of fetal calf serum (FCS) determined. Antibacterial power was studied by testing a wide range of hypochlorite concentrations (0.00025-0.5%) against four isolated bacterial species. Total bactericidal effects were observed only for 0.5%; concentration range 0.25-0.025% produced partial antimicrobial activity. The early NaOCl-produced cytotoxic action on cultured fibroblasts was cell ATP depletion which occurred at 0.00005% (with FCS 2%) followed by dose- and time-dependent decreases, reaching levels below 5% of control values. Using the 3'-[1-(phenylamino-carbonyl)-3,4-tetrazolium]-bis(4-methoxy-6-nitro)benzene sulfonic acid metabolic assay to evaluate cell death, we observed that NaOCl concentrations greater than 0.05% provoked null fibroblast survival at all exposure times assayed. Hypochlorous acid proved to exert a rapid inhibitory effect on DNA synthesis, consistent with its primary role in bacterial killing by phagocytes. Cytotoxicity produced by increasing NaOCl concentrations and assessed by measuring both mitochondrial function and cell DNA synthesis was reduced with the greatest presence of FCS (10%) in culture media.  相似文献   

6.
Aims: Studies to date have shown rapid killing of bacterial cells when exposed to copper surfaces. The mechanistic action of copper on bacterial cells is so far unknown. Methods and Results: To investigate potential mechanisms involved, meticillin‐resistant Staphylococcus aureus (MRSA) cells (107 CFU) were inoculated onto coupons of copper or stainless steel and stained with either the viability fluorophore 5‐cyano‐2,3‐ditolyl tetrazolium (CTC), to detect respiration, or BacLight? (SYTO9/propidium iodide), to determine cell wall integrity. Coupons were then observed in‐situ using epifluorescence microscopy. In addition, DNA from cells inoculated onto either copper or stainless steel surfaces was isolated and analysed by agarose gel electrophoresis. An effect on cellular respiration with CTC reduction was evident but no effect on cell membrane integrity (BacLight?) was observed. Results from the DNA isolation indicated a copper‐induced detrimental effect on MRSA genomic material as no bands were observed after exposure to copper surface. Conclusions: The results indicate that exposure to copper surfaces rapidly kills MRSA by compromising cellular respiration and damaging DNA, with little effect on cell membrane integrity. Significance and Impact of the study: This research provides a mechanistic explanation in support of previous suggestions that although copper surfaces do not affect membrane integrity of cells, there is still a rapid antimicrobial effect.  相似文献   

7.
A relatively simple method was developed to fabricate CrN/Cu nanocomposite coatings using pulsed DC magnetron sputtering for application in antibacterial activity. These nanocomposite coatings were applied on titanium (Ti)-modified stainless steel substrata (D-9 alloy) and the antibacterial activity of these coating with respect to the Gram-negative bacterium Pseudomonas aeruginosa was investigated qualitatively and quantitatively. Scanning electron microscopy, epifluorescence microscope analyses, and total viable counts confirmed that inclusion of copper in the CrN/Cu nanocomposite coatings provided antibacterial activity against P. aeruginosa. The quantitative examination of the bacterial activity of P. aeruginosa was estimated by the survival ratio as calculated from the number of viable cells which formed colonies on nutrient agar plates.  相似文献   

8.
Activation of the contact system has two classical consequences: initiation of the intrinsic pathway of coagulation, and cleavage of high molecular weight kininogen (HK) leading to the release of bradykinin, a potent proinflammatory peptide. In human plasma, activation of the contact system at the surface of significant bacterial pathogens was found to result in further HK processing and bacterial killing. A fragment comprising the D3 domain of HK is generated, and within this fragment a sequence of 26 amino acids is mainly responsible for the antibacterial activity. A synthetic peptide covering this sequence kills several bacterial species, also at physiological salt concentration, as effectively as the classical human antibacterial peptide LL-37. Moreover, in an animal model of infection, inhibition of the contact system promotes bacterial dissemination and growth. These data identify a novel and important role for the contact system in the defence against invasive bacterial infection.  相似文献   

9.
In recent years several studies in laboratory settings and in hospital environments have demonstrated that surfaces of massive metallic copper have intrinsic antibacterial and antiviral properties. Microbes are rapidly inactivated by a quick, sharp shock known as contact killing. The underlying mechanism is not yet fully understood; however, in this process the cytoplasmic membrane is severely damaged. Pathogenic bacterial and viral high-consequence species able to evade the host immune system are among the most serious lethal microbial challenges to human health. Here, we investigated contact-killing mediated by copper surfaces of Gram-negative bacteria (Brucella melitensis, Burkholderia mallei, Burkholderia pseudomallei, Francisella tularensis tularensis and Yersinia pestis) and of Gram-positive endospore-forming Bacillus anthracis. Additionally, we also tested inactivation of monkeypox virus and vaccinia virus on copper. This group of pathogens comprises biothreat species (or their close relatives) classified by the Center for Disease and Control and Prevention (CDC) as microbial select agents posing severe threats to public health and having the potential to be deliberately released. All agents were rapidly inactivated on copper between 30 s and 5 min with the exception of B. anthracis endospores. For vegetative bacterial cells prolonged contact to metallic copper resulted in the destruction of cell structure.  相似文献   

10.
Bacterial contamination of touch surfaces poses a serious threat for public health. The use of bactericidal surface materials, such as copper and its alloys, might constitute a way to aid the use of antibiotics and disinfectants, thus minimizing the risk of emergence and spread of multiresistant germs. The survival of Escherichia coli on metallic copper surfaces has been studied previously; however, the mechanisms underlying bacterial inactivation on copper surfaces have not been elucidated. Data presented in this study suggest that bacteria are killed rapidly on dry copper surfaces. Several factors, such as copper ion toxicity, copper chelators, cold, osmotic stress, and reactive oxygen species, but not anaerobiosis, influenced killing rates. Strains deleted in copper detoxification systems were slightly more sensitive than was the wild type. Preadaptation to copper enhanced survival rates upon copper surface exposure. This study constitutes a first step toward understanding the reasons for metallic copper surface-mediated killing of bacteria.  相似文献   

11.
Bacteria, yeasts, and viruses are rapidly killed on metallic copper surfaces, and the term "contact killing" has been coined for this process. While the phenomenon was already known in ancient times, it is currently receiving renewed attention. This is due to the potential use of copper as an antibacterial material in health care settings. Contact killing was observed to take place at a rate of at least 7 to 8 logs per hour, and no live microorganisms were generally recovered from copper surfaces after prolonged incubation. The antimicrobial activity of copper and copper alloys is now well established, and copper has recently been registered at the U.S. Environmental Protection Agency as the first solid antimicrobial material. In several clinical studies, copper has been evaluated for use on touch surfaces, such as door handles, bathroom fixtures, or bed rails, in attempts to curb nosocomial infections. In connection to these new applications of copper, it is important to understand the mechanism of contact killing since it may bear on central issues, such as the possibility of the emergence and spread of resistant organisms, cleaning procedures, and questions of material and object engineering. Recent work has shed light on mechanistic aspects of contact killing. These findings will be reviewed here and juxtaposed with the toxicity mechanisms of ionic copper. The merit of copper as a hygienic material in hospitals and related settings will also be discussed.  相似文献   

12.
We have recently shown that purified human NK cells, both resting and activated, efficiently kill gram-negative and gram-positive bacteria in vitro. To investigate the mechanism of NK cell-mediated cytotoxicity against Escherichia coli we have developed a mathematical model of the kinetics using the experimental data. The kinetics of killing are characterized by initial target bacterial multiplication, followed by rapid bacterial death. Experiments demonstrates that for each donor there is a threshold number of effector cells necessary to observe a net killing effect. Below the threshold, even use of high effector-to-target ratios lack killing activity and the bacterial growth cannot be stopped. In contrast, if the number of NK cells is larger than the threshold, complete killing is achieved, even at ratios as low as 1/1000. The threshold number varies among donors, ranging between 1200 and 12000 purified NK cells/tube, and provides a quantitative measure of antibacterial activity. Performing the assay at 4 degrees C raised the threshold number required for killing. Experiments performed in Boyden chambers confirm that NK cell-bacteria contact is not necessary for efficient killing, although the kinetics of bacterial lysis is slower. The fit between model and data supports the hypothesis that the bactericidal mechanism is extracellular and is mediated by an anti-microbial factor released from NK cells. Accumulated evidence also indicates that this factor is distinguishable from the mechanisms mediating tumor cell cytotoxicity.  相似文献   

13.
A relatively simple method was developed to fabricate CrN/Cu nanocomposite coatings using pulsed DC magnetron sputtering for application in antibacterial activity. These nanocomposite coatings were applied on titanium (Ti)-modified stainless steel substrata (D-9 alloy) and the antibacterial activity of these coating with respect to the Gram-negative bacterium Pseudomonas aeruginosa was investigated qualitatively and quantitatively. Scanning electron microscopy, epifluorescence microscope analyses, and total viable counts confirmed that inclusion of copper in the CrN/Cu nanocomposite coatings provided antibacterial activity against P. aeruginosa. The quantitative examination of the bacterial activity of P. aeruginosa was estimated by the survival ratio as calculated from the number of viable cells which formed colonies on nutrient agar plates.  相似文献   

14.
15.
Andrejko M 《Folia biologica》1999,47(3-4):135-141
Immune inhibitors produced in infected larvae of Galleria mellonella by such entomopathogens as Pseudomonas aeruginosa, Serratia marcescens and Heterorhabditis bacteriophora effectively blocked in vitro bactericidal activity of insect haemolymph against Escherichia coli D31, both in Galleria mellonella and Pieris brassicae pupae previously vaccinated with Enterobacter cloacae. Even at a trace concentration, the extracellular proteinases, by proteolytic degradation, totally destroyed the activity of cecropin peptides from Galleria and cecropin-like and attacin-family proteins from Pieris, but no ability to destroy antibacterial activity was shown by extracts obtained from Galleria larvae killed by massive doses of bacterial saprophytes. It is suggested that by blocking antibacterial immune response of the host, the proteinases help the bacteria to multiply in the haemolymph, thus they could be considered an important factor in the pathogenesis of bacterial diseases of insects.  相似文献   

16.
采用富集筛选法从杜仲根中分离到5株具有ACC脱氨酶活性的内生细菌, 利用纸片法测定它们的抑菌活性, 通过形态特征、生理生化试验和16S rRNA序列分析对分离菌株进行鉴定。结果显示, 5株杜仲内生细菌均具有较高的ACC脱氨酶活性, 其中4株菌对大肠杆菌CGMCC1.1103和枯草芽孢杆菌CGMCC1.769均有较好的抑菌活性, 通过生理生化试验和16S rRNA序列分析, 将菌株JDM-2、JDM-8、JDM-11、JDM-14和JDM-19分别鉴定为Pseudomonas koreensis、肺炎克雷伯氏菌(Klebsiella pneumoniae)、路德维希肠杆菌(Enterobacter ludwigii)、变栖克雷伯氏菌(Klebsiella variicola)和阿氏肠杆菌(Enterobacter asburiae)。  相似文献   

17.
The global emergence of drug-resistant bacteria leads to the loss of efficacy of our antibiotics arsenal and severely limits the success of currently available treatments. Here, we developed an innovative strategy based on targeted-antibacterial-plasmids (TAPs) that use bacterial conjugation to deliver CRISPR/Cas systems exerting a strain-specific antibacterial activity. TAPs are highly versatile as they can be directed against any specific genomic or plasmid DNA using the custom algorithm (CSTB) that identifies appropriate targeting spacer sequences. We demonstrate the ability of TAPs to induce strain-selective killing by introducing lethal double strand breaks (DSBs) into the targeted genomes. TAPs directed against a plasmid-born carbapenem resistance gene efficiently resensitise the strain to the drug. This work represents an essential step toward the development of an alternative to antibiotic treatments, which could be used for in situ microbiota modification to eradicate targeted resistant and/or pathogenic bacteria without affecting other non-targeted bacterial species.  相似文献   

18.
The well-established killing of bacteria by copper surfaces, also called contact killing, is currently believed to be a combined effect of bacterial contact with the copper surface and the dissolution of copper, resulting in lethal bacterial damage. Iron can similarly be released in ionic form from iron surfaces and would thus be expected to also exhibit contact killing, although essentially no contact killing is observed by iron surfaces. However, we show here that the exposure of bacteria to iron surfaces in the presence of copper ions results in efficient contact killing. The process involves reduction of Cu2+ to Cu+ by iron; Cu+ has been shown to be considerably more toxic to cells than Cu2+. The specific Cu+ chelator, bicinchoninic acid, suppresses contact killing by chelating the Cu+ ions. These findings underline the importance of Cu+ ions in the contact killing process and infer that iron-based alloys containing copper could provide novel antimicrobial materials.  相似文献   

19.
The present study was carried out to evaluate the possible in vitro antibacterial potential of extracts of Eugenia jambolana seeds against multidrug-resistant human bacterial pathogens. Agar well diffusion and microbroth dilution assay methods were used for antibacterial susceptibility testing. Kill-kinetics study was done to know the rate and extent of bacterial killing. Phytochemical analysis and TLC-bioautography were performed by colour tests to characterize the putative compounds responsible for this antibacterial activity. Cytotoxic potential was evaluated on human erythrocytes by haemolytic assay method and acute oral toxicity study was done in mice. The plant extracts demonstrated varying degrees of strain specific antibacterial activity against all the test isolates. Further, ethyl acetate fraction obtained from fractionation of most active ethanol extract showed maximum antibacterial effect against all the test isolates. Phytochemical analysis and TLC-bioautography of ethyl acetate fraction revealed that phenolics were the major active phytoconstituents. Ethyl acetate fraction also demonstrated no haemolytic activity on human erythrocytes and no gross behavioural changes as well as toxic symptoms were observed in mice at recommended dosage level. The results provide justification for the use of E. jambolana in folk medicine to treat various infectious diseases and may contribute to the development of novel antimicrobial agents for the treatment of infections caused by these drug-resistant bacterial pathogens.  相似文献   

20.
水产动物抗菌肽的研究进展   总被引:1,自引:0,他引:1  
抗菌肽广泛分布于多种生物,具有分子量小、耐热、广谱抗菌等特性。它在杀菌过程中不易产生耐药性,使其具有潜在的医药价值。本文综述了水产动物抗菌肽的结构特征、生物学活性、抗菌机制、目前克隆的基因的结构与功能,以及在免疫防御中的表达等一系列问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号