首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The leukocyte-associated Ig-like receptor-1 (LAIR-1) is a negative regulator of natural killer (NK) cells, its encoding gene belonging to the leukocyte receptor complex (LRC). Antibody to LAIR-1 can inhibit Ab-induced redirected lysis and TNF-alpha release of effector cells. LAIR-1 contains 2 immunoreceptor tyrosine-based inhibitory motifs (ITIM) in its cytoplasmic region that have been shown to bind constitutively and presumably regulate the tyrosine phosphatase SHP-1 in hematopoietic cells. SHP-1 mutation in mice results in abnormal lymphoproliferation, suggesting that LAIR-1 may also be implicated in regulating hematopoiesis. Here we investigated a monoclonal antibody, 9.1C3, against a NK cell antigen previously described as inducing increased colony formation in in vitro assays of human bone marrow cells. We found that 9.1C3 was expressed on CD34 positive hematopoietic progenitors for the first time. In functional assays, 9.1C3 MAb was able to inhibit Ab-induced redirected lysis and TNF-alpha secretion of NK cells. We proved that 9.1C3 is identical to LAIR-1, based on the fact that not only the antigen precipitated by 9.1C3 MAb was of 40kDa but also 9.1C3 MAb bound specifically to LAIR-1 cDNA transfected COS7 cells as well as recognized LAIR-1 fusion protein in ELISA. This finding provided the first evidence that LAIR-1 expresses on hematopoietic progenitor, implicating its role in the regulation of hematopoiesis at early stage.  相似文献   

2.
NK cell effector functions are controlled by a combination of inhibitory receptors, which modulate NK cell activation initiated by stimulatory receptors. Most of the canonical NK cell inhibitory receptors recognize allelic forms of classical and non-classical MHC class I molecules. Furthermore, high expression of MHC-I molecules on effector immune cells is also associated with reverse signaling, giving rise to several immune-regulatory functions. Consequently, the inhibitory function of MHC class I expressed on a human NKL cell line and activated primary NK and T cells on different activating receptors are analyzed in this paper. Our results reveal that MHC-I molecules display specific patterns of “selective” inhibition over cytotoxicity and cytokine production induced by ITAM-dependent receptors and 2B4, but not on NKG2D. This contrasts with the best known “canonical” inhibitory receptors, which constitutively inhibit both functions, regardless of the activating receptor involved. Our results support the existence of a new fine-tuner inhibitory function for MHC-I molecules expressed on cytotoxic effector cells that could be involved in establishing self-tolerance in mature activated NK cells, and could also be important in tumor and infected cell recognition.  相似文献   

3.
Identification and characterization of the rat homologue of LAIR-1   总被引:1,自引:0,他引:1  
Leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is a cell-surface molecule that functions as an inhibitory receptor on various immune cells in both humans and mice. We have cloned a LAIR-1 homologue from the rat that we have named rat LAIR-1. The LAIR-1 gene maps to rat chromosome 1q12 in a region showing conserved synteny with human chromosome 19q13.4 and mouse chromosome 7, where the leukocyte receptor cluster is located. Rat LAIR-1 shows 40 and 71% protein sequence identity with human LAIR-1 and mouse LAIR-1, respectively, has a single Ig-like domain and contains two immunoreceptor tyrosine-based inhibitory motif-like sequences in its cytoplasmic tail. Soluble rat LAIR-1 fusion proteins bind to the same adherent cell lines as human LAIR-1 and mouse LAIR-1, indicating that a putative ligand for all the LAIR-1 molecules is expressed on these cells. Furthermore, we show that rat and mouse LAIR-1 bind the same molecule expressed on human HT29 cells. Since many autoimmune diseases are studied in rat models, identification of rat LAIR-1 allows for in vivo studies on the function of LAIR molecules in these systems.  相似文献   

4.
Regulatory NK cell receptors can contribute to antigen-specific adaptive immune responses by modulating T cell receptor (TCR)-induced T cell activation. We investigated the potential of the NK cell receptor 2B4 (CD244) to enhance tumor antigen-induced activation of human T cells. 2B4 is a member of the CD2 receptor subfamily with both activating and inhibitory functions in NK cells. In T cells, its expression is positively associated with the acquisition of a cytolytic effector memory phenotype. Recombinant chimeric receptors that link extracellular single-chain Fv fragments specific for the tumor-associated surface antigens CD19 and GD2 to the signaling domains of human 2B4 and/or TCRζ were expressed in non-specifically activated peripheral blood T cells by retroviral gene transfer. While 2B4 signaling alone failed to induce T cell effector functions or proliferation, it significantly augmented the antigen-specific activation responses induced by TCRζ. 2B4 costimulation did not affect the predominant effector memory phenotype of expanding T cells, nor did it increase the proportion of T cells with regulatory phenotype (CD4+CD25hiFoxP3+). These data support a costimulatory role for 2B4 in human T cell subpopulations. As an amplifier of TCR-mediated signals, 2B4 may provide a powerful new tool for immunotherapy of cancer, promoting sustained activation and proliferation of gene-modified antitumor T cells.  相似文献   

5.
The magnitude and diversity of Ag-specific T cell effector activity have been proposed to be controlled by an integration of positive signals transduced by the TCR and negative signals originating from inhibitory cell surface molecules. Although the lectin family of NK cell-associated inhibitory receptors has been reported to regulate the function of murine CTLs, gp49B1, the Ig superfamily member is not known to be expressed on T cells. Moreover, the consequences of the lack of an endogenously expressed NK cell-associated inhibitory receptor on T cell functions are not known. We report that gp49B1 is expressed by nearly all activated CD8 and CD4 T cells in addition to NK cells during an immune response to viral, bacterial, or tumor challenge. Kinetics of gp49B1 expression parallel functional capability and subside in the memory phase. Following vaccinia viral infection, IFN-gamma production by both subsets of T cells and NK cells is enhanced in gp49B1-deficient mice compared with gp49B1(+/+) mice. The stimulation threshold for IFN-gamma production is also lower in gp49B1-deficient T cells. In contrast, no significant differences were observed in the cytotoxic responses. We conclude that gp49B1 is a unique inhibitory receptor that is induced in multiple lineages of innate and adaptive immune cells during an infection and controls their IFN-gamma, but not cytotoxic responses.  相似文献   

6.
We report the molecular cloning and characterization of the first leukocyte-associated Ig-like receptor 1 (LAIR-1) homologue in mice that we have named mouse LAIR-1 (mLAIR-1). The mLAIR-1 gene maps to the proximal end of mouse chromosome 7 in a region syntenic with human chromosome 19q13.4 where the leukocyte receptor cluster is located. The protein shares 40% sequence identity with human LAIR-1, has a single Ig-like domain, and contains two immunoreceptor tyrosine-based inhibitory motif-like structures in its cytoplasmic tail. Mouse LAIR-1 is broadly expressed on various immune cells, and cross-linking of the molecule on stably transfected RBL-2H3 and YT.2C2 cells results in strong inhibition of their degranulation and cytotoxic activities, respectively. Upon pervanadate stimulation, the mLAIR-1 cytoplasmic tail becomes phosphorylated, thereby recruiting Src homology region 2-containing tyrosine phosphatase-2. Interestingly, unlike human LAIR-1, Src homology region 2-containing tyrosine phosphatase-1 is not recruited to the mLAIR-1 cytoplasmic tail. Screening human and mouse cell lines for mLAIR-1 and human LAIR-1 binding partners identified several lines expressing putative ligand(s) for both receptors.  相似文献   

7.
Leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is an inhibitory collagen receptor which belongs to the immunoglobulin (Ig) superfamily. Although the inhibitory function of LAIR-1 has been extensively described in multiple leukocytes, its role in megakaryocyte (MK) has not been explored so far. Here, we show that LAIR-1 is expressed on human bone marrow CD34+CD41a+ and CD41a+CD42b+ cells. LAIR-1 is also detectable in a fraction of human cord blood CD34+ cell-derived MK that has morphological characteristics of immature MK. In megakaryoblastic cell line Dami, the membrane protein expression of LAIR-1 is up-regulated significantly when cells are treated with phorbol ester phorbol 12-myristate 13-acetate (PMA). Furthermore, cross-linking of LAIR-1 in Dami cells with its natural ligand or anti-LAIR-1 antibody leads to the inhibition of cell proliferation and PMA-promoted differentiation when examined by the MK lineage-specific markers (CD41a and CD42b) and polyploidization. In addition, we also observed that cross-linking of LAIR-1 results in decreased MK generation from primary human CD34+ cells cultured in a cytokines cocktail that contains TPO. These results suggest that LAIR-1 is a likely candidate for an early marker of MK differentiation, and provide initial evidence indicating that LAIR-1 serves as a negative regulator of megakaryocytopoiesis.  相似文献   

8.
The poliovirus receptor (PVR) belongs to a large family of Ig molecules called nectins and nectin-like proteins, which mediate cell-cell adhesion, cell migration, and serve as entry receptors for viruses. It has been recently shown that human NK cells recognize PVR through the receptor DNAM-1, which triggers NK cell stimulation in association with beta(2) integrin. In this study, we show that NK cells recognize PVR through an additional receptor, CD96, or T cell-activated increased late expression (Tactile). CD96 promotes NK cell adhesion to target cells expressing PVR, stimulates cytotoxicity of activated NK cells, and mediates acquisition of PVR from target cells. Thus, NK cells have evolved a dual receptor system that recognizes nectins and nectin-like molecules on target cells and mediates NK cell adhesion and triggering of effector functions. As PVR is highly expressed in certain tumors, this receptor system may be critical for NK cell recognition of tumors.  相似文献   

9.
Natural killer (NK) cell activation receptors accumulate by an actin-dependent process at cytotoxic immune synapses where they provide synergistic signals that trigger NK cell effector functions. In contrast, NK cell inhibitory receptors, including members of the MHC class I-specific killer cell Ig-like receptor (KIR) family, accumulate at inhibitory immune synapses, block actin dynamics, and prevent actin-dependent phosphorylation of activation receptors. Therefore, one would predict inhibition of actin-dependent accumulation of activation receptors when inhibitory receptors are engaged. By confocal imaging of primary human NK cells in contact with target cells expressing physiological ligands of NK cell receptors, we show here that this prediction is incorrect. Target cells included a human cell line and transfected Drosophila insect cells that expressed ligands of NK cell activation receptors in combination with an MHC class I ligand of inhibitory KIR. The two NK cell activation receptors CD2 and 2B4 accumulated and co-localized with KIR at inhibitory immune synapses. In fact, KIR promoted CD2 and 2B4 clustering, as CD2 and 2B4 accumulated more efficiently at inhibitory synapses. In contrast, accumulation of KIR and of activation receptors at inhibitory synapses correlated with reduced density of the integrin LFA-1. These results imply that inhibitory KIR does not prevent CD2 and 2B4 signaling by blocking their accumulation at NK cell immune synapses, but by blocking their ability to signal within inhibitory synapses.  相似文献   

10.
Activating and inhibitory receptors control natural killer (NK) cell activity. T-cell immunoglobulin and ITIM (immunoreceptor tyrosine-based inhibition motif) domain (TIGIT) was recently identified as a new inhibitory receptor on T and NK cells that suppressed their effector functions. TIGIT harbors the immunoreceptor tail tyrosine (ITT)-like and ITIM motifs in its cytoplasmic tail. However, how its ITT-like motif functions in TIGIT-mediated negative signaling is still unclear. Here, we show that TIGIT/PVR (poliovirus receptor) engagement disrupts granule polarization leading to loss of killing activity of NK cells. The ITT-like motif of TIGIT has a major role in its negative signaling. After TIGIT/PVR ligation, the ITT-like motif is phosphorylated at Tyr225 and binds to cytosolic adapter Grb2, which can recruit SHIP1 to prematurely terminate phosphatidylinositol 3-kinase (PI3K) and MAPK signaling, leading to downregulation of NK cell function. In support of this, Tyr225 or Asn227 mutation leads to restoration of TIGIT/PVR-mediated cytotoxicity, and SHIP1 silencing can dramatically abolish TIGIT/PVR-mediated killing inhibition.  相似文献   

11.
In this study, we describe human FDF03, a novel member of the Ig superfamily expressed as a monomeric 44-kDa transmembrane glycoprotein and containing a single extracellular V-set Ig-like domain. Two potential secreted isoforms were also identified. The gene encoding FDF03 mapped to chromosome 7q22. FDF03 was mostly detected in hemopoietic tissues and was expressed by monocytes, macrophages, and granulocytes, but not by lymphocytes (B, T, and NK cells), indicating an expression restricted to cells of the myelomonocytic lineage. FDF03 was also strongly expressed by monocyte-derived dendritic cells (DC) and preferentially by CD14+/CD1a- DC derived from CD34+ progenitors. Moreover, flow cytometric analysis showed FDF03 expression by CD11c+ blood and tonsil DC, but not by CD11c- DC precursors. The FDF03 cytoplasmic tail contained two immunoreceptor tyrosine-based inhibitory motif (ITIM)-like sequences. When overexpressed in pervanadate-treated U937 cells, FDF03 was tyrosine-phosphorylated and recruited Src homology-2 (SH2) domain-containing protein tyrosine phosphatase (SHP)-2 and to a lesser extent SHP-1. Like engagement of the ITIM-bearing receptor LAIR-1/p40, cross-linking of FDF03 inhibited calcium mobilization in response to CD32/FcgammaRII aggregation in transfected U937 cells, thus demonstrating that FDF03 can function as an inhibitory receptor. However, in contrast to LAIR-1/p40, cross-linking of FDF03 did not inhibit GM-CSF-induced monocyte differentiation into DC. Thus, FDF03 is a novel ITIM-bearing receptor selectively expressed by cells of myeloid origin, including DC, that may regulate functions other than that of the broadly distributed LAIR-1/p40 molecule.  相似文献   

12.
Inhibitory receptors expressed on NK cells recognize MHC class I molecules and transduce negative signals to prevent the lysis of healthy autologous cells. The lectin-like CD94/NKG2 heterodimer has been studied extensively as a human inhibitory receptor. In contrast, in mice, another lectin-like receptor, Ly-49, was the only known inhibitory receptor until the recent discovery of CD94/NKG2 homologues in mice. Here we describe the expression and function of mouse CD94 analyzed by a newly established mAb. CD94 was detected on essentially all NK and NK T cells as well as small fractions of T cells in all mouse strains tested. Two distinct populations were identified among NK and NK T cells, CD94(bright) and CD94(dull) cells, independent of Ly-49 expression. The anti-CD94 mAb completely abrogated the inhibition of target killing mediated by NK recognition of Qa-1/Qdm peptide on target cells. Importantly, CD94(bright) but not CD94(dull) cells were found to be functional in the Qa-1/Qdm-mediated inhibition. In the presence of the mAb, activated NK cells showed substantial cytotoxicity against autologous target cells as well as enhanced cytotoxicity against allogeneic and "missing self" target cells. These results suggest that mouse CD94 participates in the protection of self cells from NK cytotoxicity through the Qa-1 recognition, independent of inhibitory receptors for classical MHC class I such as Ly-49.  相似文献   

13.
NK cells express several families of receptors that play central roles in target cell recognition. These NK cell receptors are also expressed by certain memory phenotype CD8(+) T cells, and in some cases are up-regulated in T cells responding to viral infection. To determine how the profile of NK receptor expression changes in murine CD8(+) T cells as they respond to intracellular pathogens, we used class I tetramer reagents to directly examine Ag-specific T cells during lymphocytic choriomeningitis virus and Listeria monocytogenes infections. We found that the majority of pathogen-specific CD8(+) T cells initiated expression of the inhibitory CD94/NKG2A heterodimer, the KLRG1 receptor, and a novel murine NK cell marker (10D7); conversely, very few Ag-specific T cells expressed Ly49 family members. The up-regulation of these receptors was independent of IL-15 and persisted long after clearance of the pathogen. The expression of CD94/NKG2A was rapidly initiated in naive CD8(+) T cells responding to peptide Ags in vitro and on many of the naive T cells that proliferate when transferred into lymphopenic (Rag-1(-/-)) hosts. Thus, CD94/NKG2A expression is a common consequence of CD8(+) T cell activation. Binding of the CD94/NKG2A receptor by its ligand (Qa-1(b)) did not significantly inhibit CD8(+) T cell effector functions. However, expression of CD94 and NKG2A transgenes partially inhibited early events of T cell activation. These subtle effects suggest that CD94/NKG2A-mediated inhibition of T cells may be limited to particular circumstances or may synergize with other receptors that are similarly up-regulated.  相似文献   

14.
The cytotoxic activity of NK cells can be inhibited by classical and nonclassical MHC molecules. The CD1 system is formed by a family of glycoproteins that are related to classical MHC. CD1a, b, and c molecules present lipids or glycolipids to T cells and are involved in defense against microbial infections, especially mycobacteria. It has been shown recently that these molecules can inhibit target cell lysis by human NK cells. It has also been shown that mouse CD1d molecules can protect cells from NK cell-mediated cytotoxicity. In the present study, we describe how human CD1d, orthologous to murine CD1 molecules, can inhibit NK cell-mediated cytolysis. We have expressed CD1d in the HLA class I-deficient cell lines L721.221 and C1R. The inhibitory effect is observed when effector NK cells from different donors are used, as well as in different cell lines with NK activity. The inhibitory effect was reversed by incubating the target cells with a mAb specific for human CD1d. Incubation of target cells with the ligands for CD1d, alpha-galactosylceramide (alpha-GalCer), and beta-GalCer abolishes the protective effect of CD1d in our in vitro killing assays. Staining the effector cells using CD1d tetramers loaded with alpha-GalCer was negative, suggesting that the putative inhibitory receptor does not recognize CD1d molecules loaded with alpha-GalCer.  相似文献   

15.
16.
Leukocyte-associated Ig-like receptor (LAIR)-1 is a collagen-receptor that inhibits immune cell function upon collagen binding. Next to LAIR-1, the human genome encodes LAIR-2, a putative soluble homolog. In this study we show, for the first time, that the LAIR-2 gene is broadly transcribed in human PBMC, mirroring the expression profile of LAIR-1. LAIR-2 protein is expressed as a soluble receptor exhibiting high affinity for various collagen molecules to which it binds in a hydroxyproline-dependent manner. In vitro stimulation of PBMC induces secretion of LAIR-2. We detect high amounts of LAIR-2 in urine of pregnant women, indicating that the soluble receptor is indeed produced in vivo and can be cleared from the body via urine. Furthermore, LAIR-2 levels are increased in synovial fluid of patients with rheumatoid arthritis as compared with osteoarthritis patients. We hypothesize that soluble LAIR-2 may function as a natural competitor for LAIR-1, thereby regulating its inhibitory potential. Indeed, LAIR-2 prevents binding of human LAIR-1 to collagens and LAIR-1 cross-linking in vitro, suggesting that the protein has an immunoregulatory function in vivo. Hence, we reveal a novel mechanism of immune regulation by a soluble LAIR receptor regulating the inhibitory potential of the membrane-bound LAIR-1 via competition for ligands.  相似文献   

17.
The intracellular Src homology 2 (SH2) domain-containing protein tyrosine phosphatase (SHP-1) is a negative regulator of cell signaling and contributes to the establishment of TCR signaling thresholds in both developing and mature T lymphocytes. Although there is much functional data implicating SHP-1 as a regulator of TCR signaling, the molecular basis for SHP-1 activation in T lymphocytes is poorly defined. A modification of the yeast two-hybrid system was employed to identify in T cells phosphotyrosine-containing proteins capable of binding the SH2 domains of SHP-1. From this yeast tri-hybrid screen, the p85beta subunit of phosphatidylinositol 3-kinase and the immunoreceptor tyrosine-based inhibitory motif-containing receptors, leukocyte-associated Ig-like receptor-1 (LAIR-1) and programmed death-1 (PD-1), were identified. Coimmunoprecipitation studies demonstrated that the exclusive phosphotyrosine-containing protein associated with SHP-1 in Jurkat T cells under physiological conditions is LAIR-1. Significantly, this interaction is constitutive and was detected only in the membrane-enriched fraction of cell lysates. Ligand engagement of the SH2 domains of SHP-1 is a prerequisite to activation of the enzyme, and, consistent with an association with LAIR-1, SHP-1 was found to be constitutively active in unstimulated Jurkat T cells. Importantly, a constitutive interaction between LAIR-1 and SHP-1 was also detected in human primary T cells. These results illustrate the sustained recruitment and activation of SHP-1 at the plasma membrane of resting human T cells by an inhibitory receptor. We propose that this mechanism may exert a constitutive negative regulatory role upon T cell signaling.  相似文献   

18.
19.
The killer cell lectin-like receptor G1 (KLRG1) is expressed by NK cells and by T cells. In both humans and mice, KLRG1 identifies Ag-experienced T cells that are impaired in their proliferative capacity but are capable of performing effector functions. In this study, we identified E-cadherin as a ligand for murine KLRG1 by using fluorescently labeled, soluble tetrameric complexes of the extracellular domain of the murine KLRG1 molecule as staining reagents in expression cloning. Ectopic expression of E-cadherin in B16.BL6 target cells did not affect cell-mediated lysis by lymphokine-activated NK cells and by CD8 T cells but inhibited Ag-induced proliferation and induction of cytolytic activity of CD8 T cells. E-cadherin is expressed by normal epithelial cells, Langerhans cells, and keratinocytes and is usually down-regulated on metastatic cancer cells. KLRG1 ligation by E-cadherin in healthy tissue may thus exert an inhibitory effect on primed T cells.  相似文献   

20.
K cells, the effectors of antibody-dependent cell-mediated cytotoxicity, were found to express human T but not B lymphocyte antigens detected by rabbit anti-HTLA and anti-HBLA. Pretreatment of effector cells with anti-HTLA+C inhibited ADCC by specifically lysing K cells: no inhibition of ADCC by anti-HTLA occurred when deltaC was substituted for C. By contrast, pretreatment of effector cells with anti-HBLA nonspecifically inhibited ADCC, probably for forming antigen-antibody complexes with HBLA+ cells in effector suspensions: a) treatment with anti-HBLA deltaC was more inhibitory of ADCC than treatment with anti-HBLA+C, and b) the inhibitory effect of anti-HBLA on ADCC was either eliminated or markedly reduced if effector suspensions were first passed through a nylon fiber column, a procedure that removed most HBLA+ cells without affecting K cell activity. HTLA antigens expressed by K cells and NK cells are the same as HTLA antigens expressed by thymocytes since thymocytes completely absorb the anti-K cell and NK cell reactivity of anti-HTLA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号