首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Human granulocyte-macrophage colony-stimulating factor (GM-CSF), a hemopoietic growth factor, was produced and secreted from tobacco cell suspensions. The GM-CSF cDNA was carried by a binary vector under the control of the CaMV 35S promoter and the T7 terminator. In addition, a 5'-nontranslated region from the tobacco etch virus (TEV leader sequence) was fused to the N-terminal end of the GM-CSF transgene. For ease of purification, a 6-His tag was added to the 3' end of the GM-CSF cDNA. Addition of the TEV leader sequence increased protein production more than twofold compared to non-TEV controls. Initial batch cultivation studies indicated a maximum of 250 microg/L extracellular and 150 microg/L intracellular GM-CSF. Western blot analysis detected multiple peptides with masses from 14 to 30 kDa in the extracellular medium. The plant-produced GM-CSF was biologically active and could be bound to a nickel affinity matrix, indicating that both the receptor-binding region and the 6-His tag were functional. The batch production of GM-CSF was compared with the production of other recombinant proteins secreted by transformed tobacco cells. The recovery of secreted GM-CSF was increased by the addition of stabilizing proteins and by increasing salt in the growth medium to physiological levels.  相似文献   

2.
Human granulocyte-macrophage colony-stimulating factor (GM-CSF) was produced from transgenic Nicotiana tabacum cells. The application of osmotic stress through the addition of 90 g/l mannitol to the plant cell medium enhanced the maximum extracellular GM-CSF concentration from 76 g/l to 130 g/l (1.7-fold increase). The addition of bovine serum albumin (BSA), along with mannitol, further increased the maximum extracellular GM-CSF concentration by as much as 2.5-fold over the control. GM-CSF degradation studies in conditioned medium demonstrated that mannitol and BSA both stabilize the GM-CSF protein. The addition of gelatin together with mannitol to the plant cell medium also enhanced the maximum extracellular GM-CSF concentration and stability over time.  相似文献   

3.
Growth and alkaloid production in Uncaria tomentosa cell suspension cultures were studied in Murashige and Skoog medium supplemented with 10 microM 2,4-dichlorophenoxyacetic acid, 10 microM kinetin, and 58 mM sucrose for maintenance and with 10 microM indole-3-acetic acid, 10 microM kinetin, and 58 mM sucrose for production. A U. tomentosa pale Uth-3 cell line, cultured in the production medium, showed a reduced lag phase and a specific growth rate (mu) of 0.27 day(-1), while cells growing in the maintenance medium showed mu = 0.20 day(-1). U. tomentosa cells growing in the production medium produced monoterpenoid oxindole alkaloids (MOA) in amounts of 10.2 +/- 1.6 microg g(-1) dry weight (DW). The chemical profile of MOA produced by in vitro cell cultures was similar to that found in the plant. After 10 subcultures, maximum MOA production decreased to 2.0 +/- 0.7 microg g(-1) DW, while tryptamine alkaloids (TA) were produced with a maximum of 6.2 +/- 0.4 microg g(-1) DW. The increase of initial sucrose concentration up to 145 mM in the production medium enhanced the cell biomass by 3.2-fold (from 10.2 +/- 0.1 to 32.8 +/- 1.1 g DW L(-1)), reduced mu from 0.27 to 0.23 day(-1), and provoked a substantial accumulation of TA (23.1 +/- 4.7 microg g(-1) DW). A high sucrose concentration stimulated MOA production in the maintenance medium (2.7 +/- 0.5 microg g(-1) DW), even in the presence of 2,4-dichlorophenoxyacetic acid.  相似文献   

4.
Proteolytic enzymes existing in plant cell cultured media are the major reason for the loss of secreted human granulocyte-macrophage colony-stimulating factor (hGM-CSF). The addition of pepstatin, aprotinin and PMSF relatively decreased the proteolytic degradation of hGM-CSF in a conditioned medium, but sufficient prevention against the proteolytic activity could not be obtained with chemical protease inhibitors. Gelatin, as a competitive substrate for protease, showed a stabilizing effect in a conditioned medium. Compared to the initial hGM-CSF concentration in a conditioned medium, with 10 g/L of gelatin, 68% of the hGM-CSF remained after 5 days. In a cell culture experiment, 5 g/L of gelatin significantly stimulated the hGM-CSF production and accumulation in culture media, with no growth inhibition. Compared to the controls (4.72 μg/L), the extracellular hGM-CSF level could be increased to 39.78 μg/L with the addition of 5 g/L of gelatin.  相似文献   

5.
The effect of serum on cell growth and monoclonal antibody (MAb) productivity was studied in a repeated fedbatch mode using both free-suspended and immobilized S3H5/gamma2bA2 hybridoma cells. In the suspension culture, serum influenced the cell growth rate but not the specific MAb productivity. The average specific growth rate of the suspension culture in medium containing 10% serum was approximately 0.99 +/- 0.12 day(-1) (+/-standard deviation), while that in medium containing 1% serum was approximately 0.73 +/- 0.12 day(-1). The specific MAb productivity was almost constant at 3.69 +/- 0.57 mug/10(6) cells/day irrespective of serum concentration reached a maximum at ca. 1.8 x 10(6) cells/mL of medium in 10% serum medium, and the cell concentration was gradually reduced to 1%. The specific MAb productivity of the immobilized cells was more than three times higher than that of the free-suspended cells. The amount of serum in the medium did not influence the specific MAb production rate of the immobilized cells. The maintenance of high cell concentration and the enhanced specific MAb productivity of the immobilized cell culture resulted in a higher volumetric MAb productivity. In addition, MAb yield in the immobilized cell culture with medium containing 1% serum was 2.2 mg/mL of serum, which was approximately three times higher than that in the suspension culture.  相似文献   

6.
We describe the expression and in vitro activity of recombinant tumstatin from stably transformed Trichoplusia ni BTI Tn 5B1-4 cells. Recombinant tumstatin was secreted into a culture medium with a molecular weight of 29 kDa. Recombinant tumstatin was also purified to homogeneity using a simple one-step Ni2+ affinity fractionation. Purified recombinant tumstatin inhibited endothelial cell proliferation in a dose-dependent manner. The concentration at half-maximum inhibition (ED50) for recombinant tumstatin expressed in stably transformed Tn 5B1-4 cells was approximately 0.76 microg/ml. A maximum production level of 4.0 mg/l recombinant tumstatin was obtained in a T-flask culture of Tn 5B1-4 cells, 6 days after cultivation. We also investigated the individual effects of both dimethyl sulfoxide (DMSO) and sodium butyrate on recombinant tumstatin production in stably transformed Tn 5B1-4 cells. Supplementing cultures with DMSO and sodium butyrate separately increased recombinant tumstatin production in stably transformed Tn 5B1-4 cells by 117 and 32%, respectively.  相似文献   

7.
An efficient procedure has been developed for callus induction and cell suspension cultures of C. saxicola for the first time. Explant selection was carried out among leaf, stem and root to select a suitable type of explants capable of higher callus formation. Leaf explants thus selected showed maximum response to callus induction (67.1%). Modified B5 medium supplemented with 0.5 mg l(-1) 2,4-D plus 2 mg l(-1) BA was the most favorable medium for callus formation with the highest induction rate (94.8%) and greatest fresh weight of callus (1.7 g per explant). Cell suspension cultures were established by transferring 2-8 g fresh callus to 80 ml liquid B5 medium. An inoculum size of 8 g produced the greatest biomass accumulation, dehydrocavidine and berberine productions, which was 13.1 g l(-1), 8.0 mg l(-1) and 4.1 mg l(-1), respectively. In response to various sucrose concentrations from 10 g l(-1) to 80 g l(-1), cultures with 60 g sucrose l(-1) not only produced the highest dry biomass (18.5 g l(-1)) but also the highest formation of dehydrocavidine (11.6 mg l(-1)) and berberine (7.6 mg l(-1)). These prepared cell suspension cultures provided a useful material for further regulation of alkaloid biosynthesis and for enhanced production of valuable alkaloids on a large scale.  相似文献   

8.
The effect of a revised Linsmaier-Skoog (LS) medium on betacyanin production was investigated in suspension cultures of table beet (Beta vulgaris L.). The effects of a high iron concentration and low concentration of zinc on betacyanin production were not cumulative. The composition of the new revised medium for high betacyanin production was established by reducing the concentration of inorganic nitrogen (30 mM), modifying the ratio of ammonium to nitrate (1:14), reducing the concentration of zinc (0.0003 mM), and removing copper and cobalt. The revised LS medium enabled the maximum betacyanin yield of 550 mg/l to be obtained from a 14-day culture. This medium promoted the betacyanin production in three types of cell line differing in the betacyanin productivity. The betacyanin productivity (40 mg/l x day) was higher than that quoted in any other previous reports.  相似文献   

9.
Nine insect cell lines were evaluated for their potential as host systems for recombinant protein production using a new expression vector permitting the continuous high-level expression of secreted glycoproteins by transformed insect cells (Farrell et al., 1998). As a means of preliminary screening, all nine insect cell lines were transfected with the green fluorescence protein. Growth in static and suspension culture was then examined as a further method of screening. On the basis of their transfection efficiencies and cell growth characteristics, five insect cell lines, Bm5, High Five, IPLB-LdFB, IZD-MB-0503, and Sf-21, were selected for stable transformation to produce granulocyte-macrophage colony-stimulating factor (GM-CSF). These five cell lines were stably transformed using an antibiotic resistance scheme and evaluated as a polyclonal population. Increasing the antibiotic concentration was found to cause not only a decrease in the specific growth rate but also an increase in the specific protein production rate and final GM-CSF concentration. The transformed High Five cells exhibited by far the greatest specific protein production rate of 5.1 x 10(-)(6) microgram/(cell.h), resulting in the highest final GM-CSF concentration of 22.8 mg/L when grown in static culture. One cloned High Five cell line produced a GM-CSF concentration of 46 mg/L in static culture and 27 mg/L in suspension culture.  相似文献   

10.
The effect of a revised Linsmaier-Skoog (LS) medium on betacyanin production was investigated in suspension cultures of table beet (Beta vulgaris L.). The effects of a high iron concentration and low concentration of zinc on betacyanin production were not cumulative. The composition of the new revised medium for high betacyanin production was established by reducing the concentration of inorganic nitrogen (30 mM), modifying the ratio of ammonium to nitrate (1:14), reducing the concentration of zinc (0.0003 mM), and removing copper and cobalt. The revised LS medium enabled the maximum betacyanin yield of 550 mg/l to be obtained from a 14-day culture. This medium promoted the betacyanin production in three types of cell line differing in the betacyanin productivity. The betacyanin productivity (40 mg/l?day) was higher than that quoted in any other previous reports.  相似文献   

11.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) was administered subcutaneously to 45 chronic hepatitis C patients, randomly assigned to receive 0.5, 1 or 2 microg GM-CSF/kg b.w. daily/6 weeks (n=30), or no treatment (n=15). Alanine transaminase (ALT) values normalized in four out of 10 (40%) patients administered 2 microg GM-CSF [1 cleared hepatitis C virus (HCV) RNA] but in none given 0.5 or 1 microg or untreated controls (P=0.0079). Following 4 weeks of rest, patients received 5 million units of interferon (IFN)alpha2b every other day/6 months, alone (n=30), or combined with 2 microg GM-CSF/daily for 3 months (n=15). At treatment end, ALT levels in patients administered the combination normalized more frequently than in those given monotherapy (73% vs 47%, P=0.089). Viraemia decreased significantly in 11/15 (73%) patients administered GM-CSF/IFNalpha2b combination (mean log HCV RNA copies/ml+/-SEM: 4.13+/-0.40 vs 5.29+/-0.23;P=0.011), and in 20/30 (67%) receiving IFNalpha2b monotherapy (4.27+/-0.28 vs 5. 31+/-0.14;P=0.004); 27% and 20% of patients given the combination and monotherapy, respectively, cleared HCV RNA. One patient in each regime had a sustained response after 12 months. 2', 5'-Oligoadenylate synthetase activity (2-5AS) increased during GM-CSF therapy (P=0.033 with the 2 microg dose). 2-5AS increased more in the GM-CSF/IFN-alpha2b combination than with IFNalpha2b monotherapy (P<0.02). GM-CSF provoked a skin reaction at the injection site, accompanied by moderate and reversible rises in eosinophil and leucocyte counts. In summary, daily s.c. GM-CSF administration is safe and shows effects against HCV; the GM-CSF/IFNalpha2b combination has an additional-but transient-antiviral activity in chronic hepatitis C.  相似文献   

12.
A gram-negative, rod-shaped, aerobe, capable of converting 2-propanol (isopropanol, IPA) to acetone was isolated from an oil/sump, and identified by 16 S rDNA analysis as Alcaligenes faecalis. Investigations showed this strain to be extremely solvent-tolerant and it was subsequently named ST1. In this study, A. faecalis ST1 cells were immobilized by entrapment in Ca-alginate beads (3 mm in diameter), and used in the bioconversion of high concentration IPA. The biodegradation rates and the corresponding microbial growth inside the beads were measured at four different IPA concentration ranges from 2 to 15 g l(-1). The maximum cell concentration obtained was 9.59 g dry cell weight (DCW) l(-1) medium which equated to 66 g DCW l(-1) gel, at an initial IPA concentration of 15 g l(-1) after 216 h of incubation. A maximum biodegradation rate of 0.067 g IPA g cells(-1) h(-1) was achieved for 5 g l(-1) IPA where an increase in IPA concentration to 38 g l(-1) caused reduction in bead integrity. A modified growth medium was developed which allowed repeated use of the beads for more than 42 days without any loss of integrity and continued bioconversion activity.  相似文献   

13.
Cell growth, monoterpenoid oxindole alkaloid (MOA) production, and morphological properties of Uncaria tomentosa cell suspension cultures in a 2-L stirred tank bioreactor were investigated. U. tomentosa (cell line green Uth-3) was able to grow in a stirred tank at an impeller tip speed of 95 cm/s (agitation speed of 400 rpm), showing a maximum biomass yield of 11.9 +/- 0.6 g DW/L and a specific growth rate of 0.102 d(-1). U. tomentosa cells growing in a stirred tank achieved maximum volumetric and specific MOA concentration (467.7 +/- 40.0 microg/L, 44.6 +/- 5.2 microg/g DW) at 16 days of culture. MOA chemical profile of cell suspension cultures growing in a stirred tank resembled that of the plant. Depending on culture time, from the total MOA produced, 37-100% was found in the medium in the bioreactor culture. MOA concentration achieved in a stirred tank was up to 10-fold higher than that obtained in Erlenmeyer flasks (agitated at 110 rpm). In a stirred tank, average area of the single cells of U. tomentosa increased up to 4-fold, and elliptical form factor increased from 1.40 to 2.55, indicating enlargement of U. tomentosa single cells. This work presents the first report of U. tomentosa green cell suspension cultures that grow and produce MOA in a stirred tank bioreactor.  相似文献   

14.
Transgenic rice cell cultures, capable of producing recombinant human alpha(1)-antitrypsin (rAAT), were scaled up from shake flasks to a 5-L bioreactor. The maximum specific growth rates (mu(max)) observed from two bioreactor runs were 0.40 day(-1) (doubling time of 1.7 days) and 0.47 day(-1) (doubling time of 1.5 days), and the maximum specific oxygen uptake rates were 0.78 and 0.84 mmol O(2)/(g dw h). Using a metabolically regulated rice alpha-amylase (RAmy3D) promoter, signal peptide, and terminator, sugar deprivation turned on rAAT expression, and rAAT was secreted into the culture medium. After 1 day of culture in sugar-free medium, there was still continued biomass growth, oxygen consumption, and viability. Extracellular concentrations of 51 and 40 mg active rAAT/L were reached 1.7 and 2.5 days, respectively, after induction in a sugar-free medium. Volumetric productivities for two batch cultures were 7.3 and 4.6 mg rAAT/(L day), and specific productivities were 3.2 and 1.6 mg rAAT/(g dw day). Several different molecular weight bands of immunoreactive rAAT were observed on immunoblots.  相似文献   

15.
Winged bean callus was adapted to increasing concentrations of NaCl by sequential transfer to medium with 0, 0.5, 1.0, 1.5, and 2.0% (w/v) NaCl. When the culture media, after cell suspension cultures of callus adapted to 0.5 (SA-0.5), 1.0 (SA-1.0), 1.5 (SA-1.5), or 2.0% (w/v) NaCl (SA-2.0), were analyzed by sodium dodecylsulfate-polyacrylamide gel electrophoresis, six specific or enhanced polypeptide bands (SAP1, -2, -3, -4, -5, and -6) were observed. SAP1, with a molecular weight of 84,000, was abundantly secreted in suspension cultures of SA-1.0 and SA-1.5, and was observed as the most striking polypeptide band. The SAP1 yield was about 4 mg/g cells fresh weight. SAP1 was abundantly secreted after the suspension culture of SA-1.0 in the presence of AlCl3, but little was secreted in the presence of KCl, LiCl, CaCl2, MgCl2, mannitol, sucrose, or abscisic acid. SAP1 was purified from the culture medium after suspension culture of SA-1.0 in the presence of 1.0% (w/v) NaCl. Two steps, ammonium sulfate fractionation and CM-cellulose chromatography, were sufficient for purification to homogeneity. Finally, about 5 mg of SAP1 could be isolated from 7 g of fresh callus cells. Of the amino-terminal 32 amino acid residues of SAP1, 10 and 5 were found to be hydroxyproline and proline, respectively. SAP1 on an acrylamide gel was stained by the periodic acid-Schiff method. It is interesting that SAP1 has pentahydroxyproline blocks (Hyp5) instead of tetrahydroxyproline blocks (Hyp4) common to many hydroxyproline-rich glycoproteins in dicotyledons. Thus, this novel hydroxyproline-rich glycoprotein was shown to be abundantly secreted from NaCl-adapted winged bean cells.  相似文献   

16.
To study the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on the heart, echocardiographic assessments of left ventricular (LV) end-diastolic and end-systolic (ES) diameters (D), ejection fraction (EF) and cardiac output (CO) were done in six male patients (28-70 years of age) with advanced sarcoma (Group 1), prior to (day -1-0), during (day 7-9) and after (day 20-21) a first course of i.v. doxorubicin (day 0) without GM-CSF and a second course (3 weeks after the first one) with GM-CSF 250 microg/m(2)subcutaneously and daily from day 1-11. A similar study was done in ten female patients with advanced breast cancer (31-58 years of age, Group 2) for a first course of doxorubicin+cyclophosphamide with GM-CSF (same schedule as in Group 1). As compared to the mean of values prior to and after the course with GM-CSF in Group 1 and 2, the LVESD during GM-CSF administration transiently increased by median 6% (range -19 to 30%, P<0.05) vs -9% (-21 to 6%, not significant) in the first course without GM-CSF in Group 1 (P<0.05 between courses). The CO and EF tended to decrease during GM-CSF. GM-CSF thus causes a small and transient decrease of LV contractility.  相似文献   

17.
Summary Recombinant Chinese hamster ovary cells were successfully cultured semi-continuously on microcarriers of gelatin or modified dextran under non-selective conditions for up to three weeks. High and constant production rates for human immune interferon and tissue-type plasminogen activator were obtained. For cells that produced interferon, the highest cell concentration and interferon production was obtained with gelatin microcarriers though the specific production when grown in the presence of 0.2% fetal calf serum was slightly higher for cells cultured on dextran microcarriers (0.12 U/cell day versus 0.11 U/cell day). For cells that produced plasminogen activator, a slightly higher cell concentration was obtained for cells grown on dextran microcarriers (9x105 cells/ml versus 7x105 cells/ml). However, the specific and total production rates were significantly higher for cells cultured on gelatin microcarriers (6.7 pg/cell day versus 2.1 pg/cell day). The maximum cell concentration and specific production rate could be increased to 2.3x106 cells/ml and 3.4 pg/cell day for dextran microcarriers by adding 6-aminohexanoic acid to the medium. For gelatin microcarriers, the addition of 6-aminohexanoic acid increased the specific production rate to 14.4 pg/cell day. Cell growth, however, was inhibited.  相似文献   

18.
A cell suspension culture of Taxus media was established from a stable callus line of this species. The growth rate and production of paclitaxel and baccatin III of this cell suspension were significantly increased during the shake flask culture in its respective optimum media for cell growth and product formation, which were selected after assaying 24 different culture media. The highest yields of paclitaxel (2.09 mg L(-1)) and baccatin III (2.56 mg L(-1)) in the production medium rose (factors of 7.0 and 3.0, respectively) in the presence of methyljasmonate (220 microg g(-1) FW). When the elicitor was added together with mevalonate (0.38 mM) and N-benzoylglycine (0.2 mM), the increase in the yields of paclitaxel and baccatin III was even higher (factors of 8.3 and 4.0, respectively). Thereafter, a two-stage culture for cell suspension was carried out using a 5-l stirred bioreactor running for 36 days, the first stage being in the cell growth medium until cells entered their stationary growth phase (12 days) and the second stage being in the production medium supplemented with the elicitor and two putative precursors in the concentrations indicated above. Under these conditions, 21.12 mg L(-1) of paclitaxel and 56.03 mg L(-1) of baccatin III were obtained after 8 days of culture in the production medium.  相似文献   

19.
Suspension cultures of Catharanthus roseus (C. roseus) were elicited with fungal cell wall fragments of Aspergillus niger (A. niger), Fusarium moniliforme (F. moniliforme), and Trichoderma viride (T. viride). The effects of elicitor dosage, exposures time, and age of subculture on ajmalicine accumulation were studied. A higher concentration of elicitor extract responded positively to C. roseus suspension cultures. Ajmalicine accumulation increased by about 3-fold when cells were treated with A. niger, F.moniliforme, and T. viride. The maximum ajmalicine production (75 microg g(-1) dry weight (DW)) was observed in cells treated with T. viride. Cell cultures were elicited with 5% preparation of A. niger, F. moniliforme, and T. viride and exposed for 24, 48, 72, and 96 h. for elicitation. Suspension cultures elicited with T. viride for 48 h showed a 3-fold increase (87 microg g(-1) DW) in ajmalicine contents, whereas A. niger and F. moniliforme synthesized a 2-fold increase in alkaloid and yielded 52 and 56 microg g(-1) DW ajmalicine, respectively. C. roseus cells of different age (5,10, 15, 20, and 25 days old) were treated with a 5% elicitor of A. niger, F. moniliforme, and T. viride and investigated elicitors activity at different age of cell cultures. Maximum yield 166 microg g(-1) DW of ajmalicine was synthesized in 20 day old suspension cultures treated with T. viride. A longer period of incubation of cell cultures with elicitors adversely affected the ajmalicine synthesis.  相似文献   

20.
The bioconversion of the lignan desoxypodophyllotoxin by cell suspensions of Linum flavum and of Podophyllum hexandrum was investigated. The apolar substrate could be easily dissolved in the culture medium at a concentration of 2 mM by complexation with dimethyl--cyclodextrin. Growth parameters of the cell suspensions were not affected by either the addition of cyclodextrin itself, or when cyclodextrin-complexed desoxypodophyllotoxin was present in the medium. The complexed lignan disappeared from the medium within 7 days for both cell cultures. Cellularly only small amounts of desoxypodophyllotoxin were found. After feeding of desoxypodophyllotoxin, the cell culture of L. flavum accumulated 5-methoxypodophyllotoxin and 5-methoxypodophyllotoxin--D-glucoside. After 7 days a total maximal content of 2.38% on a dry weight basis of 5-methoxypodophyllotoxin was formed, corresponding with 249 mg l-1 suspension. The highest bioconversion percentage of 52.3% was found at day 14. The desoxypodophyllotoxin-fed culture of P. hexandrum accumulated podophyllotoxin and its -D-glucoside with a maximal content of 2.87% on a dry weight basis after 9 days, corresponding with 192 mg 1-1 suspension. The highest bioconversion percentage of 33.2% was also found at day 9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号