首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNA-protein interactions in the assembly of tobacco mosaic virus.   总被引:4,自引:0,他引:4       下载免费PDF全文
Assembly of tobacco mosaic virus is initiated by the binding of a specific loop of the RNA into the central hole of the disk aggregate of protein subunits. Since the nucleation loop is located about five-sixths along the RNA molecule, subsequent elongation must be bidirectional. We have now measured the rates of elongation in the two directions by determining the lengths of RNA protected from nuclease digestion at different times and using either intact TMV rNA, or RNA with most of the longer tail removed. Comparison of the rates with the protein supplied as either a mixture of disks with A-protein (a mixture of less aggregated states) or just A-protein, shows that different mechanisms and protein aggregates are used for the most rapid growth. When disks are present, they add more rapidly along the longer RNA tail but do not appear to add directly on the shorter tail. In contrast, smaller aggregates (A-protein) can add at both ends of the rod, but do so more slowly. Mechanisms for these processes are discussed. Preliminary results on the binding of the specific hexanucleotide AAGAAG to the disk are given and compared with the known changes on binding nonspecific hexanucleotides or the trinucleotide AAG.  相似文献   

2.
Assembly of tobacco mosaic virus.   总被引:2,自引:0,他引:2  
The assembly of tobacco mosaic virus requires the presence of a particular protein aggregate, the disk. During the nucleation, a specific region of the RNA interacts with a single disk, to bring about a necessarily cooperative transition from the paired two-layer structure to a short segment of nucleo-protein helix. There is a high selectivity for this region of the TMV RNA, because of the many nucleotides bound at once, and other nucleotide sequences appear only to bind by a different mechanism. Elongation of the nucleated rods can continue with either further disks or the less aggregated 'A-protein' as the protein source, but the continued cooperativity inherent with disks would have some advantages. The rates of the two processes have been separately determined and growth is faster when disks are still present. New experiments show that the breakdown of disks to yield A-protein is relatively slow and it is concluded that virus growth from disks could not proceed through a prior breakdown in solution, but must involve the direct interaction of the disk with the growing nucleoprotein rod. The detailed mechanism of disk addition is not understood but it may involve a directed breakdown, since there is also evidence for the existence of a non-equilibrium form of A-protein which has aggregation kinetics distinct from those of equilibrium A-protein. Some implications for the general assembly pathways of viruses both of the specificity and of the assembly/disassembly cycle during the viral infection are considered.  相似文献   

3.
4.
The initial stages of the assembly of tobacco mosaic virus have been investigated by reassembling the RNA with a radioactively labelled protein disk preparation and then completing the reaction by the addition of a large excess of an unlabelled disk preparation. This gives measurements of the numbers of subunits incorporated at early times and the growth curves have been plotted.These curves have been analysed in terms of a bimolecular nucleation reaction, which is first order in the disk concentration, with a rate constant of 1.3 × 103 mol?1 s?1, and then an elongation which saturates at high protein concentrations to a maximum rate of 7.6 subunits s?1, with a Km of 0.84 mg/ml for the disk preparation.These kinetic parameters, and the predicted overall assembly curves, have been compared with data previously determined by other methods and agree closely, showing that the different experimental techniques give consistent results. The measurements are fully compatible with our earlier hypotheses Butler &; Klug 1971 that the nucleation with virus RNA and protein disks is rapid compared with the subsequent rod elongation and that this elongation can occur most rapidly directly from the protein disks. They are not compatible with the contention of some other workers that elongation cannot occur directly from disks, but only from the smaller A-protein.  相似文献   

5.
Reassembly of tobacco mosaic virus from the isolated RNA and protein, supplied as a disk preparation consisting of over 75% as the disk aggregate, has been followed by the protection of the RNA from nuclease digestion. The sizes of the RNA fragments were determined on agarose/acrylamide gels.During the first few minutes the protected RNA is found to be “quantized” into discrete lengths, differing on average by about 50 or 100 nucleotides, corresponding to one or two turns of the virus helix and strongly supporting the hypothesis that elongation in the major direction, towards the 5′-hydroxyl end, is occurring by the direct addition of protein disks. Protected RNA of the full length found in tobacco mosaic virus is visible within six minutes of starting reassembly, and by 30 minutes most of the RNA is fully protected.  相似文献   

6.
Summary We had proposed that both the initiation and growth of tobacco mosaic virus rods takes place from the RNA and protein disks, containing 34 protein subunits. Other workers have reported that growth occurs not from disks but from A-protein. We now review their experiments and show that they have not used disks, but rather two-disk stacks and that their results, but not conclusions, are compatible with our earlier findings.  相似文献   

7.
The small-angle X-ray scattering (SAXS) method using a synchrotron radiation source was applied to the study of the self-aggregation process of tobacco mosaic virus protein (TMVP) at a concentration of 5.0 or 12.0 mg ml-1 in 50 mM or 100 mM-phosphate buffer (ionic strengths approx. 0.1 and 0.2, respectively) at pH 7.2 in the temperature region of 4.8 to 25.0 degrees C. This paper presents the results of static measurements of SAXS. Sedimentation velocity experiments were performed simultaneously under the same conditions. These results are qualitatively parallel to those of the SAXS measurements, although the size of stacked disks derived from the SAXS measurements is larger than that derived from the sedimentation experiments, suggesting a change in the equilibrium conditions in the centrifugal field. Qualitative analysis of the SAXS data with model simulation calculations implies that the aggregation of TMVP consists of two steps: (1) the aggregation of A-protein comprising a few subunits to form double-layered disks; and (2) the random polymerization of double-layered disks by disk-stacking. Increase in temperature, ionic strength or protein concentration induced TMVP to polymerize to form a double-layered disk or a quadruple-layered short rod with consumption of A-proteins, accompanied by a small number of multi-layered short rods. The SAXS results indicate that the A-protein and the multilayered short rods are polydisperse with respect to size and shape, i.e. the mixture of A-protein, double-layered disks and multi-layered short rods coexists in the equilibrium state without pressure-induced partial dissociation of TMPV as observed during normal ultracentrifugation, and even under solution conditions in which the formation of double-layered disks or higher-order aggregates is favored.  相似文献   

8.
Specific encapsidation of fragments of TMV RNA.   总被引:1,自引:0,他引:1  
The in vitro reconstitution of tobacco mosaic virus (TMV) is initiated by the binding of a disk of TMV protein to the 'disk recognition site', a region of the RNA chain at or near the 5'-terminus for which the disk has special affinity. In order to gain insight into the recognition process, we have studied the ability of disks to encapsidate short RNA fragments produced by partial pancreatic or T1 RNase digestion of TMV RNA. The disk is capable of dicriminating among such fragments, encapsidating only a few of the many present in the digest. The products of encapsidation are short nucleoprotein rods of the same diameter as TMV and of length proportional to that of the encapsidated RNA fragment. The particles differ from TMV, however, in one significant aspect (apart from their length): they possess rings of RNA-free protein at one or both extremities of the rod. In the case of T1 RNase digestion the principal encapsidated fragments were fragments T1 (105 nucleotides) and a family of smaller fragments containing elements of the same sequence. Partial digestion with pancreatic RNase generated only one major fragment (fragment P1; 150 nucleotides) with affinity for the disk. Fragment T1 has been sequenced and shown to represent a portion of the coat protein cistron. Fragment P1 has been partially sequenced but its function is not yet known. Several lines of evidence indicate that fragment T1 is not the disk recognition site. The portion of the TMV RNA chain from which fragment P1 is derived, on the other hand, is encapsidated early in the reconstitution process; thus fragment P1 may contain the disk recognition site. Fragment T1 and fragment P1 both have purine-rich and cytosine-poor sequences near their termini. In addition, fragment T1, and possibly fragment P1, possess a periodicity of order three in purine residues. It seems likely that one or both of the aforesaid properties are largely responsible for the affinity of these fragments for the disk.  相似文献   

9.
The assembly of tobacco mosaic virus involves a preformed protein aggregate, the disk, which consists of two rings each of 17 protein subunits, as the sole protein source. The kinetics of this assembly have been studied, using both tobacco mosaic virus RNA, which causes a rapid initiation and so enables growth to be studied, and also polyadenylic acid, with which initiation is slowed down and thus can be partially resolved from growth. Two disks interact with a special nucleotide sequence at the 5′-hydroxyl end of a single tobacco mosaic virus RNA molecule to initiate the formation of the viral nucleoprotein helix, which then grows by the addition of further disks. All of the subunits from these further disks are incorporated into the helix, so that growth proceeds by the co-operative addition of 34 subunits at a time. Under the conditions used, rearrangement of each disk takes about six seconds, giving a total time for the growth of a complete virus particle of just over six minutes.  相似文献   

10.
Assembly of nucleoprotein rods from tobacco mosaic virus (TMV) coat protein and poly(A) depends on the presence of 20S disks in a manner very similar to nucleation and growth of virions in reconstitution with TMV RNA. Products assembled with (A) approximately equal to 5000 appear to have the same buoyant density in CsCl, the same nucleotide/protein ratio and the same nuclease stability, as reconstituted and native TMV. Their rate of formation is very similar to the rate of reconstitution with TMV RNA when high-molecular-mass (A) approximately equal to 5000 is used, but becomes a function of chain length particularly with (A) less than or equal to 185. The composition of assembly products can be described sufficiently with the relation between number of capsid polypeptide monomers/particle, np, to the number of nucleotide residues/chain, nnt, of np = 1/3 (nnt + 50) with two important restrictions: (1) particles of less than four turns of helically arranged capsid subunits are unstable, and (2) particles with about 150 or less nucleotides per chain deviate in structure from mature virus and virus-like (= longer) assembly products. This is indicated by changes in both buoyant density in CsCl and optical properties, while 'dislocation' of the disk to the helical arrangement of capsid subunits ('helicalization') and nuclease stability already become established with chains as short as (A) approximately equal to 58 +/- 20. Consequently, we suggest that assembly proceeds through three distinct phases: (1) nucleation (resulting in helicalization) by interaction of nucleic acid with the first disk; (2) stabilization of the primary (unstable!) nucleation complex by addition of a second disk and formation of a four-turn virus-like and stable nucleoprotein helix, which is then fit for (3) elongation by addition of further disks. The question of what makes the TMV protein disk select specifically TMV RNA during virion assembly is discussed in some detail.  相似文献   

11.
David Zimmern  P.J.G. Butler 《Cell》1977,11(3):455-462
Upon mixing purified TMV RNA with limited amounts of viral coat protein in the form of the disk aggregate, a unique region of the whole RNA becomes protected from nuclease digestion. The protected RNA consists of fragments up to 500 nucleotides long in varying yields, which are found in nucleoprotein particles having a protein-nucleic acid ratio similar to the mature virus. The protected RNA, when reextracted, is able to rebind to coat protein disks rapidly, quantitatively and with high affinity, becoming once more RNAase-resistant in the process. Small aggregates of TMV protein (A protein) are inactive in formation of the nuclease-resistant complexes. On the basis of this evidence, we identify the isolated RNA fragments as portions of TMV RNA containing the origin or initiation site for in vitro reassembly, which have been protected from digestion by incorporation into assembly nucleation complexes.The yield, but not the length distribution, of the protected RNA pieces is found to double upon increasing the protein added from 1–2 disk-equivalents of protein per RNA molecule. This implies that the formation of the nucleation complexes may involve a highly cooperative initial addition of protein.  相似文献   

12.
The coat protein cistron of tobacco mosaic virus has been located on the viral RNA starting between 975 and 1050 nucleotides from the 3'-hydroxyl end. This locates its 5' end close to the origin for virus assembly, where the first protein disk interacts with RNA. It also means that the coat protein mRNA must have a short 5'-untranslated tail and a long (over 500 nucleotides) 3' one. The recovery of characteristic oligonucleotides in nuclease-protected rods during the growth from RNA and a protein disk preparation shows that elongation of the nucleated rods proceeds independently in both directions though, on average, much more rapidly along the longer 5' tail than the shorter 3' tail. Protected RNA of length equal to that in the complete virion is first seen within 6 min, showing that the most rapidly elongated particles are substantially complete by this time.  相似文献   

13.
The acidic proteins, A-proteins, from the large ribosomal subunit of Saccharomyces cerevisiae grown under different conditions have been quantitatively estimated by ELISA tests using rabbit sera specific for these polypeptides. It has been found that the amount of A-protein present in the ribosome is not constant and depends on the metabolic state of the cell. Ribosomes from exponentially growing cultures have about 40% more of these proteins than those from stationary phase. Similarly, the particles forming part of the polysomes are enriched in A-proteins as compared with the free 80 S ribosomes. The cytoplasmic pool of A-protein is considerably high, containing as a whole as much protein as the total ribosome population. These results are compatible with an exchanging process of the acidic proteins during protein synthesis that can regulate the activity of the ribosome. On the other hand, cells inhibited with different metabolic inhibitors produce a very low yield of ribosomes that contain, however, a surprisingly high amount of acidic proteins while the cytoplasmic pool is considerably reduced, suggesting that under stress conditions the ribosome and the A-protein may aggregate, forming complex structures that are not recovered by the standard preparation methods.  相似文献   

14.
Segments of cloned cDNA to tobacco mosaic virus RNA, 150--300-bases long, have been hybridised and cross-linked to the RNA, which has then been used for reassembly experiments. This enables the elongation reaction, which does not encapsidate the double-stranded region generated, to be stopped at specific regions along the RNA and the resulting particles to be characterised, by measuring the lengths of the rods in the electron microscope. With hybridisation to the 3'-tail the entire RNA contiguous to the nucleation region is encapsidated, from the 5'-terminus up to the modified region. When the double-stranded region is on the 5'-side of the nucleation region, the mean length of the particles corresponds to a situation in which the double-stranded region is unable to enter the central hole of the growing rod, but the 3'-tail of the RNA is completely encapsidated. The longest particles hybridised on the 5'-tail (i.e. in a class longer than the mean length) show an effect complementary to those with a 3'-block, and have lengths which correspond to encapsidation from the modified region to the 3'-terminus, despite the continued presence of the 5'-tail up the rod. In all cases where there is a remaining 5'-tail the lengths observed can only be explained if elongation has occurred substantially, or probably completely, along the 3'-tail. Hence elongation must have occurred simultaneously along both the 5' and 3'-tails of the tobacco mosaic virus RNA after initiation on the internal nucleation region.  相似文献   

15.
The outer segments of vertebrate rod photoreceptor cells consist of an ordered stack of membrane disks, which, except for a few nascent disks at the base of the outer segment, is surrounded by a separate plasma membrane. Previous studies indicate that the protein, peripherin or peripherin/rds, is localized along the rim of mature disks of rod outer segments. A mutation in the gene for this protein has been reported to be responsible for retinal degeneration in the rds mouse. In the present study, we have shown by immunogold labeling of rat and ground squirrel retinas that peripherin/rds is present in the disk rims of cone outer segments as well as rod outer segments. Additionally, in the basal regions of rod and cone outer segments, where disk morphogenesis occurs, we have found that the distribution of peripherin/rds is restricted to a region that is adjacent to the cilium. Extension of its distribution from the cilium coincides with the formation of the disk rim. These results support the model of disk membrane morphogenesis that predicts rim formation to be a second stage of growth, after the first stage in which the ciliary plasma membrane evaginates to form open nascent disks. The results also indicate how the proteins of the outer segment plasma membrane and the disk membranes are sorted into their separate domains: different sets of proteins may be incorporated into membrane outgrowths during different growth stages of disk morphogenesis. Finally, the presence of peripherin/rds protein in both cone and rod outer segment disks, together with the phenotype of the rds mouse, which is characterized by the failure of both rod and cone outer segment formation, suggest that the same rds gene is expressed in both types of photoreceptor cells.  相似文献   

16.
17.
Assembly of the Particle of Tobacco Mosaic Virus from RNA and Disks of Protein   总被引:23,自引:0,他引:23  
The reconstitution of TMV does not proceed by the stepwise addition of single protein subunits, but by the addition of preformed disks to the growing rod. The assembly is initiated by the interaction of a disk with a special sequence of about fifty nucleotides at the 5′ end of the TMV RNA. This is the basis of the selectivity for viral over other RNAs.  相似文献   

18.
《The Journal of cell biology》1987,105(6):2589-2601
The plasma membrane and disk membranes of bovine retinal rod outer segments (ROS) have been purified by a novel density-gradient perturbation method for analysis of their protein compositions. Purified ROS were treated with neuraminidase to expose galactose residues on plasma membrane-specific glycoproteins and labeled with ricin-gold-dextran particles. After the ROS were lysed in hypotonic buffer, the plasma membrane was dissociated from the disks by either mild trypsin digestion or prolonged exposure to low ionic strength buffer. The dense ricin-gold-dextran-labeled plasma membrane was separated from disks by sucrose gradient centrifugation. Electron microscopy was used to follow this fractionation procedure. The dense red pellet primarily consisted of inverted plasma membrane vesicles containing gold particles; the membrane fraction of density 1.13 g/cc consisted of unlabeled intact disks and vesicles. Ricin-binding studies indicated that the plasma membrane from trypsin-treated ROS was purified between 10-15-fold. The protein composition of plasma membranes and disks was significantly different as analyzed by SDS gels and Western blots labeled with lectins and monoclonal antibodies. ROS plasma membrane exhibited three major proteins of 36 (rhodopsin), 38, and 52 kD, three ricin-binding glycoproteins of 230, 160, and 110 kD, and numerous minor proteins in the range of 14-270 kD. In disk membranes rhodopsin appeared as the only major protein. A 220-kD concanavalin A-binding glycoprotein and peripherin, a rim-specific protein, were also present along with minor proteins of 43 and 57-63 kD. Radioimmune assays indicated that the ROS plasma membrane contained about half as much rhodopsin as disk membranes.  相似文献   

19.
The coat protein of tobacco mosaic virus forms numerous aggregates, including the small A-protein, the disk, and two helical forms. The structures of the disk, the helical protein forms, and the virus are compared. Most of the differences are in the conformation of the chain between residues 89 and 113, which lies in the region of protein at the center of the virus, inside the RNA. It is disordered in the disk, but has a fixed conformation in the virus and the protein helices. The differences between the virus and the two helical protein forms are largely in the conformations of arginines and carboxylic acids in this region.  相似文献   

20.
Arctic and alpine shrubs are valuable for future dendro-ecological and dendro-climatological studies in regions where trees are sparse or absent. A commonly accepted procedure of sampling shrub stem disks is at the root collar. However many shrub studies report low inter-series correlations in radial measurements as compared to trees. Many studies also report cross-dating difficulties with radial measurements from shrubs within a stand and commonly attribute this to differential growth along the length of the stem. So does one stem disk entirely represent the environmental parameters the shrub might be reacting to? Does change in sampling location of the stem disk affect the subsequent ring-width chronologies and climate sensitivity? To tackle these questions, we investigated Juniperus communis L. – a species wide spread in the circumpolar arctic – across a latitudinal gradient in the Ural Mountains. Based on traditional radial ring-width measurements we assessed growth synchronicity along the length of shrub stems. We also compared ring width chronologies representing different stem heights with respect to their relationships with temperature and the standardized precipitation evapotranspiration index (SPEI). Growth patterns often varied significantly among stems disks of the same shrubs, resulting in dissimilar climate-growth relationships of stem disk chronologies. For correlations with temperature, stem disks at 20 cm distance from the root collar captured the best signal. For correlations with SPEI data we could not find any specific stem disk chronology with highest sensitivity. At least in our dataset, no “perfect sampling height” with high climate sensitivity exists and our results thus highlight that a single stem disk from a shrub may not completely represent the shrub’s growth response to climate parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号