首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
采用扫描电镜对来自北美和东亚的变豆菜属植物(美国7个种,中国8个种)的果实表面微形态进行观察,结合前人对伞形科其他类群果实微形态特征的研究及近年来分子系统学证据,对变豆菜属的种间分类进行研究。结果显示,变豆菜属植物果实的形态大小、皮刺弯曲程度和果柄蜡质纹饰丰富多样。研究表明变豆菜属是一个自然类群,果实表面钩刺结构有利于该属植物的传播及扩散,果实微形态特征具有分类学价值,可作为种间分类的依据。根据变豆菜属果实表面微形态特征,编制了该属植物分种检索表。  相似文献   

2.
红花变豆菜(Sanicula rubriflora F. Schmidt)是有药用价值的植物,全株干燥后与其他药用同属植物易混淆,种间关系存在争议,通过高通量测序技术对红花变豆菜叶绿体基因组测序,利用生物信息学方法对测序数据进行拼接、注释,首次报道红花变豆菜叶绿体基因组结构及特点,利用叶绿体基因组数据,提供种间分类新证据,并且分析相关类群的进化关系。S. rubriflora叶绿体基因组序列的长度为155 721 bp,其中包括一个85 981 bp的大单拷贝区(large single copy,LSC)和一个17 060 bp的小单拷贝区(small single-copy region,SSC),它们被两个26 340 bp的反向重复区(inverted repeat sequence,IRs)隔开。红花变豆菜叶绿体基因组GC含量为38.20%,包含129个基因,其中84个蛋白质编码基因,37个tRNA基因和8个rRNA基因。红花变豆菜叶绿体基因组结构具有高度保守性,其中编码基因共有51 907个密码子,最多编码5 095个亮氨酸,最少编码689个色氨酸,简单重复序列分析共发现32个位点,大多数是单碱基重复的A/T类型。叶绿体基因组聚类结果支持天胡荽亚科(Hydrocotyloideae)是伞形科(Umbelliferae)内比较原始的类群;变豆菜亚科(Saniculoideae)和芹亚科(Apioideae)为姊妹类群,是伞形科较进化的类群;变豆菜属植物是一个相对自然的类群;红花变豆菜与黄花变豆菜(S. flavovirens)为近缘姊妹种,但是两者形态和地理分布差异较大。该研究结果为变豆菜属属下种间鉴定及其种间演化奠定基础。  相似文献   

3.
蓑藓属(Macromitrium Brid.)是藓类植物中分类最困难的类群之一。先后该属记录946个种,现接受351个种。目前中美洲、亚洲、澳大利亚、新西兰等地区的蓑藓属植物基本完成了分类修订,而南美洲、非洲中部、马达加斯加等地区的蓑藓属植物尚未进行系统的分类修订。蓑藓属的属下分类系统问题众多,先后在该属下建立了10个亚属、20个组和2个亚组,目前接受的有4个亚属和8个组,但是这些类群之间的分类地位和关系仍然不清。鉴于蓑藓属种数多,种间分类问题多,分布广泛,需要开展国际间的合作才能够解决世界蓑藓属的分类修订和系统学研究。  相似文献   

4.
豆科黄华属的植物地理研究   总被引:5,自引:0,他引:5  
首次全面论述了全世界黄华属(豆科)植物地理。黄华属是豆科少数几个东亚-北美间断分布属之一。对黄华属5组21种的分布进行了分析,发现本属4个频度分布中心依次是:东亚地区(8种/3组,其中特有种4种),伊朗-土兰地区(7种/3组,其中特有种3种),落基山地区(7种/2组,均为特有种)及大西洋北美地区(3种/1组,均为特有种)。基于以下事实:在东亚地区存在本属最多的组与种;在此区可以见到黄华属系统发育系列;该属最原始的组种及最进化的组种也在该区出现等,可以认为东亚地区是该属的现代分布中心及分化中心。伊朗-土兰地区(中亚东部至喜马拉雅)及落基山地区所含种、组数仅次于东亚地区,而且多倍体现象多发生于这两区,因此可认为是本属的次生分布中心及分化中心。在此二地区,物种分化较活跃且复杂,先后描述了很多新种和变种,也曾进行过较多的归并处理。最近的分子生物学证据不断揭示,在这地区曾被归并的一些分类群存在着较大不同,从而提醒分类学家对年轻区系中物种分化较活跃的类群进行分类处理时,无论是建新分类群还是对某些类群进行归并,应持谨慎态度。作者根据黄华属植物的现代地理分布、形态演化趋势、现有的化石及地质历史资料,推测黄华属植物在中新世之前早已形成,并且在晚第三纪欧亚大陆与北美大陆失去陆地连接之前在两大陆已经存在,很可能是于早第三纪或晚白垩纪在劳亚古陆上起源于一个含羽扇豆生物碱的古槐成员。两大陆分离后,在不同的成种因子的影响下,形成了各自的演化格局:在亚洲,晚第三纪的喜马拉雅造山运动、古地中海消失及第四纪冰川作用引起的旱化、寒化,促进了该属植物的强烈分化;而在北美,第四纪的冰川作用及局部的山体隆起,可能是促进该属植物演化的主要动力。根据黄华属植物的系统演化趋势及原始类群的分布式样分析,东亚地区的中国-日本亚区可能是本属植物的原始类型中心。  相似文献   

5.
为探讨叶表皮微形态特征在变豆菜属植物中的系统及分类学意义,我们利用扫描电镜对变豆菜属11个种(13个居群)的叶表皮微形态特征进行了研究。结果表明,11种变豆菜属植物叶表皮微形态特征较稳定,上表皮细胞轮廓大多不清晰,初级蜡质纹饰均存在条状纹饰,表皮上均粘附着颗粒物;下表皮均存在气孔,气孔周围存在均匀分布的纹饰,气孔外拱盖表面大多有颗粒状纹饰,并且其二级纹饰类型、气孔周围纹饰、气孔外拱盖内缘纹饰等叶表皮微形态特征上存在一定差异。上述研究结果可为探讨变豆菜属类群界定及种间关系提供重要依据。  相似文献   

6.
中国伞形科变豆菜亚科的果实解剖特征及其系统学意义   总被引:7,自引:2,他引:5  
对中国伞形科变豆菜亚科 (Saniculoideae) 2属 (变豆菜属SaniculaL .和刺芹属EryngiumL .) 13种植物的果实形态结构进行了比较解剖学观察 ,从果实横切面形状及其合生面宽度、外果皮和中果皮外突所呈皮刺和鳞片或瘤状体的形态及皮刺中木化厚壁细胞组织的分布、外果皮细胞形状及其角质层厚度、中果皮细胞层数和结晶体类型及分布、色素块沉积、伴生分泌管和油管的大小及分布等方面对上述各属种进行了观察和分析 ,归纳出各属的果实解剖特征 ,探讨了属间演化水平 ,认为刺芹属果实较变豆菜属果实演化程度高。结合已有的研究结果 ,讨论了该亚科与伞形科天胡荽亚科 (Hydrocotyloideae)间的区别及其演化关系。  相似文献   

7.
山茶科紫茎属和舟柄茶属的系统学研究   总被引:6,自引:0,他引:6  
本文对山茶科紫茎属和舟柄茶属进行了深入细致的系统学研究,藉助形态学、古植物学、孢粉学,细胞学和解剖学资料澄清了两属的分合问题,证实两属在各方面具有较大相似性,并且各分类特征存在广泛的联系而无法分开,从而赞同H.K.Airy Shaw,J.R.Sealy及S.A.Spongberg的主张,即将这两属合并。在此基础上本文提出了世界范围广义紫茎属下分类系统。属下新系统根据花柱合生程度、花序类型,苞片与萼片的形状以及两者的相对长度等特征,分为两个亚属,五个组,同时对该属种类进行修订。该属共有23种5变种,本文发表新组1个,新名称2个,新组合9个,新异名10个,新种1个,并附有分种检索表。广义的紫茎属为东亚-北美间断分布类型,中国南部和西南部是该属的起源中心和高度分化中心。根据化石资料推断,该属起源于早白垩纪,在第三纪以前于整个劳亚古陆上呈广泛而连续的分布,后因冰川及造山运动的影响,从而形成现在的分布格局。  相似文献   

8.
徐晗  李振宇  李俊生 《广西植物》2017,37(2):139-144
通过ITS序列对21种中国外来苋属植物进行系统进化关系研究。通过ITS序列种间、种内遗传距离分析,发现苋属种间变异为0~0.055 1,种内变异为0~0.009 2。使用TAXON DNA软件分析ITS序列种间、种内变异的分布图看出规律,结果表明苋属ITS序列的种间变异适中,种间变异明显大于种内变异。采用最大似然法(ML)构建的系统树将中国苋属分为5或6个进化支(根据自展支持率取值不同)。异株苋亚属长芒苋和苋亚属刺苋聚类在一起,西部苋和糙果苋单独成为一个进化支。苋亚属中苋组苋亚组反枝苋和绿穗苋亚组鲍氏苋有着更近的亲缘关系,苋组苋亚组尾穗苋和绿穗苋亚组绿穗苋、繁穗苋等亲缘关系更近。白苋亚属分为2或3个类群,根据自展支持率取值不同,合被苋可以和白苋、北美苋并为一支,也可以单独成为一支。综上所述,该文认为苋属经典分类体系中3亚属或2~3组的分类地位不成立,建议中国苋属采取5组2亚组或6组2亚组的分类体系。5组2亚组分别由长芒苋组、糙果苋组、苋组(苋亚组和绿穗苋亚组)、白苋组和凹头苋组组成。其中,合被苋也可从白苋组分出,单独构成1组,形成6组2亚组的分类体系。表明该序列对苋属大部分种类分类效果较好,对西部苋和糙果苋复合群,绿穗苋复合群以及白苋亚属的分类价值不高。  相似文献   

9.
利用光学显微镜和扫描电子显微镜对变豆菜属15种植物的花粉形态进行观察。结果表明,变豆菜属15种植物的花粉大小为(28.51~54.29) μm~(12.23~28.98) μm,极轴与赤道轴比值(Polar axis/Equatorial axis)为1.48~2.46,具三孔沟。花粉粒赤道面观有近矩形、赤道收缩形、长椭圆形等类型,其中近矩形和赤道收缩形占多数;极面观为圆形或三角圆形。在扫描电镜下,其外壁表面纹饰为网状。我们研究结果支持在伞形科变豆菜亚科中,变豆菜属植物的花粉具有中等进化、比较进化的形态特征,花粉形态可为个别物种的分类处理提供孢粉学证据。  相似文献   

10.
为揭示淫羊藿属(Epimedium L.)植物染色体组遗传与进化,阐明该属植物系统亲缘关系和现代地理分布格局形成。该文对淫羊藿属植物51个分类群(43种、1亚种、6变种和1个栽培品种)和2种温哥华属(Vancouveria Morren et Decne.)植物的根尖进行了有丝分裂中期染色体核型分析,并运用核型似近系数聚类分析方法对这53个分类群植物的核型进行了聚类研究。结果表明:所有种类的染色体数均为12,二倍体(2n=2x=12),第1对同源染色体均为随体染色体,核型均为Stebbins的2A或1A型。可见,淫羊藿属植物染色体组在遗传进化中确实较为保守,种间核型非常相似。核型似近系数聚类分析为淫羊藿属植物系统进化研究提供了一些明显的线索。分析结果完全支持该属属下两个亚属(Subgen.Rhizophyllum和Subgen.Epimedium)的划分。亚属Epimedium的核型似近系数聚类结果显示,该类群物种间的系统亲缘关系与地理分布密切相关。核型似近系数分析结果还发现,来自东亚地区的淫羊藿属植物染色体组具有明显的变异,显示了更高的遗传多样性。基于上述研究结果,推断了淫羊藿属植物现代地理分布格局的形成过程。该研究结果可为淫羊藿属植物的资源利用、系统分类和遗传演化等领域的研究提供参考。  相似文献   

11.
The present paper is a preliminary research of the taxonomy, evolution, geographical distribution and origin of the species of the Genus Pedicularis L. in Xizang plateau. It may be summed up as follows: 1. There are 108 species of Pedicularis in Xizang, representing about 33% of the total species of the genus known in China. Among these species, there are 35 endemics, about 35.9% of the total species of the genus, this is especially true in Southeastern Xizang. Where there are 82.7% of total species of Xizang and 88% of endemics reported. 2. According to the relationships of the morphology of flower, leaf and evolution, the genus Pedicularis in Southeastern Xizang seems very active in evolution, because there is a wide range of flower types varying from the primitive alternate-toothless and opposite-toothed to the advanced beaked and long-tubed corolla-types. 3. There are almost all morphological types of the pollen, especially, the primitive particular tricolpate type is decidedly dominant, and the species with derived type of bicolpate pollen almost all belong to the beeked, long-tubed type of flowers; therefore, the evolutionary tendency and correlation between two types is very clear. According to above conditions, it may be considered that Southeastern Xizang is the evolutionary centre of the Genus Pedicularis L. 4. Basing upon the floristic-geographical analysis of neighbouring regions, we may consider that the members of genus Pedicularis in Xizang mainly come from the East, i.e. the mountains of the plateau frontier in Western Sichuan and Northwestern Yunnan. Finally, the floral relationships with other regions such as Buthan, Nepal, Xinjiang and Qinghai, Gansu, etc. are not so close, because the species in common are not verymany and usually widely distributed species.  相似文献   

12.
Plants endemic to oceanic islands represent some of the most unusual and rare taxa in the world. Enzyme electrophoresis was used to assess genetic diversity within and divergence among all endemic species of a small genus of plants on the Canary Islands. Our results show that the genus Tolpis is similar to many other island groups in having generally low allozyme divergence among species, with the highest divergence found among four groups of endemics. The two rare and highly localized species T. glabrescens and T. crassiuscula are each divergent from all other species in the Canaries. Tolpis coronopifolia is also divergent at allozyme loci; this is the only endemic species that is a self-compatible annual (or weak biennial). A large, morphologically variable species complex consisting of T. laciniata and T. lagopoda together with several named and unnamed morphological variants shows low allozyme divergence among its elements. The evolution of polyploidy from diploid ancestors in situ in oceanic archipelagos is uncommon, but the tetraploid T. glabrescens is an exception. Allozyme data do not implicate any extant diploid Tolpis species as parents of the polyploid. It is possible that T. glabrescens originated early in the evolution of Tolpis in the Canary Islands and that its parents are now extinct. The nonendemic T. barbata shows no greater divergence from the Canary Island endemics than some endemics exhibit among themselves. Both changes in allele frequencies and unique alleles are responsible for genetic divergence among species of Tolpis.  相似文献   

13.
We investigated the phylogenetic relationships among 20 species of Oriental torrent frogs in the genus Amolops and its allies from China and Southeast Asia based on 1346-bp sequences of the mitochondrial 12S and 16S rRNA genes. Oriental species of the tribe Ranini form a monophyletic group containing 11 clades (Rana temporaria + Pseudoamolops, R. chalconota, four clades of Amolops, Meristogenys, three clades of Huia species, and Staurois) for which the phylogenetic relationships are unresolved. The genus Amolops consists of southern Chinese, southwestern Chinese, Thai, and Vietnamese-Malaysian lineages, but their relationships are also unresolved. The separation of southern and southwestern lineages within China conforms to previous morphological and karyological results. Species of Huia do not form a monophyletic group, whereas those of Meristogenys are monophyletic. Because P. sauteri is a sister species of R. temporaria, distinct generic status of Pseudoamolops is unwarranted.  相似文献   

14.
The five mint genera Brazoria, Macbridea, Physostegia, Synandra and Warnockia (Lamioideae: Lamiaceae) are all North American endemics. Together with the monotypic European genus Melittis and the Asian genus Chelonopsis, these taxa have been classified as subtribe Melittidinae. Previous morphological studies have failed to uncover synapomorphic characters for this group. We sequenced the plastid trnL‐trnF region and trnS‐trnG spacer and the nuclear ribosomal 5S non‐transcribed spacer (5S‐NTS) to assess phylogenetic relationships within Melittidinae. Standard parsimony and direct optimization (POY) analyses show Melittis, the type genus of the subtribe, as sister to Stachys. Thus, the monophyly of subtribe Melittidinae is not supported either by molecular or morphological data. However, the North American endemics form a monophyletic group that can be recognized as the recircumscribed tribe Synandreae. The molecular relationships among these genera are corroborated by both morphological and cytological data. The expected close relationship between the south‐central endemics Warnockia and Brazoria and their sister relationship to the widespread genus Physostegia is confirmed. Nevertheless, most of the North American endemics are restricted to the south‐east of the continent. Dispersal westwards and northwards is correlated with an increase in chromosome numbers. No specific Eurasian origin (i.e., transatlantic or transpacific) can be determined, but Synandreae are clearly distinct from the large Stachys clade, and therefore represent a separate migration into North America. © The Willi Hennig Society 2007.  相似文献   

15.
The genus Swertia is one of the large genera in Gentianaceae, including 154 species, 16 series and 11 sections. It is disjunctly distributed in Europe, Asia, Africa and N. America, but entirely absent from Oceania and S. America. According to Takhtajan’s (1978) regionalization of the world flora, Swertia is found in 14 regions. Eastern Asiatic region with 86 species, of which 58 are local endemics, 13 series and 9 sections, ranks the first among all the regions. The highest concentration of the taxa and endemics in Eastern Asiatic region occurs in SW China-Himalayan area (Sikang-Yunnan P. , W. Sichuan, W. Yunnan-Guichou Plateau of China and NE. Burma, N. Burmense P. , E. Himalayan P. and Khasi-Manipur P. ). In this area there are 74 species (48 endemics), 12 series, and 9 sections; thus about half species of the world total, three quarters of series and 82% of sections occur in this small area. Besides, the taxa at different evolutionary stages in Swertia also survive here. It is an indication that SW. China-Himalayan area is a major distribution centre of the genus Swertia. In addition, Sudan-Zambezian Region in Africa, with 22 species, 4 series and 2 sections, is a second distribution centre. The primitive type of the genus Swertia is Sect. Rugosa which consists of 2 series and 23 species. It is highly centred in the mountains of SW. China (Yunnan, Sichuan, Guizhou and SE. Xizang) where 2 series and 16 species occur. Among them 15 species of Ser. Rugosae were considered as the most primitive groups in this genus. From our study, the outgroup of Swertia is the genus Latouchea Frahch. , which is distributed in Yunnan, Sichuan, Guizhou, Hunan, Guangdong, Guangxi and Fujian. The two groups overlap in distribution in SW. China. According to the principle of common origin, the ancestor of two genera ap peared most probably in this overlapping area. It was inferred that SW. China Was the birth-place of the genus Swertia. Four sections of Swertia have different disjunct distribution patterns: Sect. Ophelia is of Tropic Asia, Africa and Madagascar disjunct distribution; sect. Swertia is of north temperate distribution; sect. Spinosisemina is in Tropical Asia (Trop. India to S. China and Philipines); sect. Platynema also is in Tropical Asia (Java, Sumatra, Himalayas to SW. China). These disjunct patterns indicate that the Swertia floras between the continents or between continent and islands have a connection with each other. From paleogeographical analysis, Swertia plants dispersed to Madagascar before the Late Cretaceous, to SE. Asian Islands in the Pleistocene, to North America in the Miocene. The distribution of Swertia in Madagascar might be later than that in Asia. Therefore the origin time of the genus Swertia was at least not later than the Late Cretaceous, and might be back to the Mid-Cretaceous. The genus Swertia first fully developed and differentiated, forming some taxa at different evolutionary stages (Rugosa, Swertia, Poephila, Ophelia and Platynema etc. ) in the original area, and these taxa quickly dispersed in certain directions during the Late Cretaceous-Middle Tertiary when the global climate was warm and no much change. There seem to be three main dispersal routes from the origin area to different continents; (1) The westward route i. e. from SW. China, along the Himalayas area to Kashmir, Pakistan, Afghanistan and Iran, and then southwestwards into Africa throuth Arabia. Four sections (Poephila, Macranthos, Kingdon-Wardia and Ophelia) took this dispersal route. Most species of sect. Ophelia dispersed along this route, but a few along southern route and north ern route. Sect. Ophelia greatly differentiated in Africa and the African endemic sectionSect. Montana was derived from it. The two sections form there a second distribution center of Swertia. (2) The southward route, i. e. towards S. India through the Himalayas, and towards SE. Asian islands through C. and S. China, Indo-China. Along this dispersal route sect. Platynema, Sect. Spinosisemina and a few species of Sect. Ophelia dispersed; (3) The northward rout, i. e. northwards across N. China, C. Asia to a high latitude of Euasia, and also through E. Asia into N. America. The following groups took this route: sect. Rugosa, sect. Swertia, sect. Frasera, sect. Heteranthos and sect. Ophelia ser. Dichotomae. Therefore, it seems that the genus Swertia originated in SW. China and then dispersed from there to N. and S. Asia, Africa, Europe and North America and formed the moderndistribution pattern of this genus.  相似文献   

16.
本文报道在我国伞形科植物上寄生的4种单轴霉(Plasmopara)。其中寄生于鸭儿芹(Cryptotaenia japonic Hassk)上的鸭儿芹单轴霉(Plasmopara cryptotaeniae sp.nov.)和寄生于水芹[Oenanthe javanica(BI.)DC.]及卵叶水芹(O.rosthornii Diels)上的水芹单轴霉(Plasmopara oenantheae sp.nov.)是2个新种。寄生于变豆菜(Sanicula chinensis Bunge)上的变豆菜单轴霉(Plasmopara saniculae Traian et O.savulescu)是亚洲的新记录种。  相似文献   

17.
Two new species of the genus Sanicula (Umbelliferae), S. pengshuiensis Sheh etZ.Y.Liu and S. oviformis X.T.Liu et Z.Y.Liu, are described from Sichuan Province, China.  相似文献   

18.
The new orchid genus Sirindhomia , named after H. R. H. Princess Maha Chakri Sirindhorn of Thailand, is established to accommodate three species from Thailand (Chiang Mai and Tak provinces), Myanmar (Shan State), and China (Yunnan province). Two new species are described and a new combination, based on Habenaria monophylla Collett & Hemsl., is made; all of the three species are illustrated, and a distribution map is provided. Sirindhomia belongs to subtribe Orchidinae and has an overall similarity with Ponerorchis, Hemipilia , and Amitostigma. However, it significantly differs in its column morphology which is more reminiscent of that found in the vegetatively distinct genus Orchis. The new species, Sirindhomia pulchella and S. mirabilis , seem to be local endemics, as they are only known from the Thai mountains Doi Chiang Dao and Khao Hua Mot, respectively. Sirindhomia monophylla , on the other hand, is known from a very large part of the range of the genus. All Sirindhomia species known are restricted to limestone mountains at 800–2200 m alt., mainly growing in rock crevices and among scrub as well as on grassy slopes. They flower from April to June.  相似文献   

19.
New Caledonia is a tropical hotspot of biodiversity with high rates of regional and local endemism. Despite offering an ideal setting to study the evolution of endemism, New Caledonia has received little attention compared with the other nearby hotspots, particularly New Zealand. Most studies of the Neocaledonian endemism have been carried out at the regional level, comparing the various groups and species present in New Caledonia but absent in neighboring territories. In addition, remarkably high short‐range endemism has been documented among plants, lizard and invertebrates, although these have usually been done, lacking a phylogenetic perspective. Most studies of Neocaledonian endemism have referred to the geological Gondwanan antiquity of the island and its metalliferous soils derived from ultramafic rocks. Very old clades are thought to have been maintained in refugia and diversified on the metalliferous soils. The present study documents the pattern of diversification and establishment of short‐range endemism in a phylogenetic context using the Neocaledonian cockroach genus Lauraesilpha. Mitochondrial and nuclear genes were sequenced to reconstruct phylogenetic relationships among the species of this genus. These relationships, in the light of the species distribution, do not support the hypothesis that species diversified via an adaptive radiation on metalliferous soils and are not consistent with areas of highest rainfall. Species of Lauraesilpha have similar altitudinal ranges and ecological habits and are short‐range endemics on mountains. What our analysis did reveal was that closely related species are found on nearby or contiguous mountains, and thus these formations probably played the key role establishing short‐range endemism (in association with recent climatic changes). © The Willi Hennig Society 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号