首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between the microtubules and a massive system of vesicles associated with the sea urchin mitotic apparatus was examined by light and electron microscopy. Astral rays made up of elongated vesicles and associated tracts of microtubules continue to grow toward the cell surface during late anaphase and telophase at the same time the aster center appears to be breaking down in preparation for the next division. On the basis of current knowledge of the requirements for microtubule polymerization and the known presence of a calcium-dependent ATPase in the mitotic apparatus, it is proposed that the vesicle system functions to control the polymerization and depolymerization of microtubules by calcium ion regulation. A model for such a system is proposed.  相似文献   

2.
In the mitotic sea urchin egg, the spindle microtubules were composed of different tubulin isotypes from those of astral microtubules using monoclonal antibodies [Oka et al. (1990) Cell Motil. Cytoskeleton, 16, 239-250]. Three of the antibodies, D2D6, DM1B, and YL1/2, were specific for spindle microtubules, astral microtubules and reactive with both microtubules, respectively. The mitotic sea urchin egg was treated with microtubule depolymerizing (colcemid and nocodazole) and stabilizing (hexylene glycol) drugs and change in the heterogeneous distribution of the tubulin isotypes was investigated by the immunofluorescence procedure using these three monoclonal anti-tubulin antibodies. We observed that: (1) the microtubule depolymerizing drugs caused quick depolymerization of most mitotic microtubules, and a small number of spindle microtubules remaining were stained with all three antibodies; (2) hexylene glycol induced many microtubules in the mitotic apparatus, which was stained with D2D6 but was not stained with DM1B; (3) hexylene glycol also induced a great number of miniasters in the cytoplasm, and they were stained with three antibodies. These results suggest that these drugs altered the distribution of tubulin isotypes in the mitotic microtubules during depolymerization or polymerization within a short time.  相似文献   

3.
J H Dinsmore  R D Sloboda 《Cell》1989,57(1):127-134
Previously, we described a 62 kd protein that is a component of the isolated sea urchin mitotic apparatus. This protein is a substrate for an endogenous, calcium/calmodulin-dependent protein kinase also associated with the mitotic apparatus. Phosphorylation of the 62 kd protein directly correlates with the depolymerization of microtubules in isolated mitotic apparatuses. Here we report a test of the function of the 62 kd protein in vivo. Double labeling studies using a monoclonal antibody to tubulin and an affinity purified antibody specific for the 62 kd protein reveal that the 62 kd protein co-localizes with mitotic apparatus microtubules. When affinity purified antibodies to the 62 kd protein were microinjected into dividing sea urchin embryos, mitosis was blocked in a stage-specific manner. The results are discussed with respect to the role of the 62 kd protein in the metaphase-anaphase transition.  相似文献   

4.
Are membranes of the mitotic apparatus translocated by microtubules?   总被引:1,自引:0,他引:1  
During all mitotic stages membranous structures can be found around and within the mitotic apparatus of HeLa cells. A careful ultrastructural analysis partly by means of stereo-electron microscopy of semithin (0.5 microns) sections reveals a close association of membranes and microtubules in many regions of the mitotic apparatus. The contact can be direct or via connecting structures (cross-bridges). Referring to various hypotheses concerning the translocation of membranous structures in the cytoplasm of interphase cells (see Suchard and Goode, 1982), the assumption that microtubules participate in the transport of membranous structures in the mitotic apparatus is discussed in detail.  相似文献   

5.
The life-cycle of the amoeboflagellate Tetramitus rostratus includes amoeboid, cyst, and flagellate stages. The ultrastructure of these three stages is illustrated, with particular emphasis on flagellate morphology. Amoeba morphology is typical of that of limax amoebas. Cysts, forming from trophic amoebas, are enclosed by a wall made up of two layers: ectocyst (ca. 70 nm), and endocyst (200 nm). The wall apparently forms from precursor material present in vesicles in the pre-cyst stage cytoplasm. Flagellate morphology is characterized by a well-defined top-shaped profile, maintained by microtubules under the plasma membrane. The flagellar apparatus or mastigont consists of four flagella, their basal bodies, sheaves of microtubules associated with two of the basal bodies, and several rhizoplasts (periodicity 20 nm). A deep, microtubule-supported, ventral invagination appears to function as a gullet. A small number of mitotic stages observed in amoeboid and flagellate individuals suggests similarity in the division process in both stages: intranuclear mitotic apparatus, nucleolus persisting through mitosis, no centrioles or basal bodies functioning as centrioles, difficulty in resolving chromosomes. The text compares ultrastructures of several amoeboflagellate organisms and evaluates the phylogenetic significance of those features common to different species. On the basis of this study, Tetramitus most closely resembles Naegleria spp.  相似文献   

6.
When tubulins obtained from particular microtubules of the sea urchin (ciliary doublet A tubules, flagellar doublet microtubules, and mitotic microtubules) are analyzed by electrophoresis in a polyacrylamide gel system containing sodium dodecyl sulfate and urea, heterogeneity of the alpha subunit, and differences between the tubulins are revealed. The alpha subunit of tubulin from mitotic apparatus and from A microtubules of ciliary doublets is resolved into two bands, while the alpha subunit of flagellar doublet tubulin gives a single band. The mitotic and ciliary tubulins differ in the mobilities of their two alpha species, or in the relative amounts present, or both. The existence of differences between the tubulins has been confirmed by a preliminary analysis of their cyanogen bromide peptides.  相似文献   

7.
Chromosome segregration and cell division requires the regulated assembly of the mitotic spindle apparatus. This mitotic spindle is composed of condensed chromosomes attached to a dynamic array of microtubules. The microtubule array is nucleated by centrosomes and organized by associated structural and motor proteins. Mechanical linkages between sister chromatids and microtubules are critical for spindle assembly and chromosome segregation. Defects in either chromosome or centrosome segregation can lead to aneuploidy and are correlated with cancer progression. In this review, we discuss current models of how centrosomes and chromosomes organize the spindle for their equal distribution to each daughter cell.  相似文献   

8.
The effect of hexyleneglycol on the structure of the mitotic apparatus was studied by light and electron microscopies. By treating sea urchin eggs at prometaphase and metaphase with hexyleneglycol, the mitotic apparatus was found to become remarkably decorated with unusually many astral microtubules which were conspicuously uniform in length. These microtubules appeared to be associated with the granular materials which are most likely microtubule initiating sites or microtubule-organizing centers.  相似文献   

9.
Evidence is presented that the "22S protein" of mitotic apparatus isolated from sea urchin eggs is not microtubule protein. An antibody preparation active against 22S protein is described, and immunochemical studies of the distribution of 22S protein in various cellular fractions and among morphological features of mitotic apparatus are reported. The protein is ubiquitous in the metaphase egg fractions that were tested but is not found in sperm flagella. It is immunologically distinct from proposed microtubule protein isolated from mitotic apparatus by the method of Sakai, and from proposed microtubule protein obtained after extraction with mild acid. It exists in nontubule material of isolated mitotic apparatus but is not detectable in microtubules.  相似文献   

10.
In this study we have examined the immunocytochemical distribution of calmodulin during mitosis of higher plant endosperm cells. Spindle development in these cells occurs without centrioles. Instead, asterlike microtubule converging centers appear to be involved in establishing spindle polarity. By indirect immunofluorescence and immunogold staining methods with anti-calmodulin antibodies, we found endosperm calmodulin to be associated with the mitotic apparatus, particularly with asterlike and/or polar microtubule converging centers and kinetochore microtubules, in an immunocytochemical pattern distinct from that of tubulin. In addition, endosperm calmodulin and calcium showed analogous distribution profiles during mitosis. Previous reports have demonstrated that calmodulin is associated with the mitotic apparatus in animal cells. The present observation that calmodulin is also associated with the mitotic apparatus in acentriolar, higher plant endosperm cells suggests that some of the regulatory mechanisms involved in spindle formation, microtubule disassembly, and chromosome movement in plant cells may be similar to those in animal cells. However, unlike animal cell calmodulin, endosperm calmodulin appears to associate with kinetochore microtubules throughout mitosis, which suggests a specialized role for higher plant calmodulin in the regulation of kinetochore microtubule dynamics.  相似文献   

11.
In addition to their role in nucleating the assembly of axonemal microtubules, basal bodies often are associated with a microtubule organizing center (MTOC) for cytoplasmic microtubules. In an effort to define molecular components of the basal body apparatus in Chlamydomonas reinhardtii, genomic and cDNA clones encoding gamma-tubulin were isolated and sequenced. The gene, present in a single copy in the Chlamydomonas genome, encodes a protein with a predicted molecular mass of 52,161 D and 73% and 65% conservation with gamma-tubulin from higher plants and humans, respectively. To examine the distribution of gamma-tubulin in cells, a polyclonal antibody was raised against two peptides contained within the protein. Immunoblots of Chlamydomonas proteins show a major cross-reaction with a protein of Mr 53,000. In Chlamydomonas cells, the antibody stains the basal body apparatus as two or four spots at the base of the flagella and proximal to the microtubule rootlets. During cell division, two groups of fluorescent dots separate and localize to opposite ends of the mitotic apparatus. They then migrate during cleavage to positions known to be occupied by basal bodies. Changes in gamma-tubulin localization during the cell cycle are consistent with a role for this protein in the nucleation of microtubules of both the interphase cytoplasmic array and the mitotic spindle. Immunogold labeling of cell sections showed that gamma-tubulin is closely associated with the basal bodies. The flagellar transition region was also labeled, possibly indicating a role for gamma-tubulin in assembly of the central pair microtubules of the axoneme.  相似文献   

12.
The role of stathmin in the regulation of the cell cycle   总被引:24,自引:0,他引:24  
Stathmin is the founding member of a family of proteins that play critically important roles in the regulation of the microtubule cytoskeleton. Stathmin regulates microtubule dynamics by promoting depolymerization of microtubules and/or preventing polymerization of tubulin heterodimers. Upon entry into mitosis, microtubules polymerize to form the mitotic spindle, a cellular structure that is essential for accurate chromosome segregation and cell division. The microtubule-depolymerizing activity of stathmin is switched off at the onset of mitosis by phosphorylation to allow microtubule polymerization and assembly of the mitotic spindle. Phosphorylated stathmin has to be reactivated by dephosphorylation before cells exit mitosis and enter a new interphase. Interfering with stathmin function by forced expression or inhibition of expression results in reduced cellular proliferation and accumulation of cells in the G2/M phases of the cell cycle. Forced expression of stathmin leads to abnormalities in or a total lack of mitotic spindle assembly and arrest of cells in the early stages of mitosis. On the other hand, inhibition of stathmin expression leads to accumulation of cells in the G2/M phases and is associated with severe mitotic spindle abnormalities and difficulty in the exit from mitosis. Thus, stathmin is critically important not only for the formation of a normal mitotic spindle upon entry into mitosis but also for the regulation of the function of the mitotic spindle in the later stages of mitosis and for the timely exit from mitosis. In this review, we summarize the early studies that led to the identification of the important mitotic function of stathmin and discuss the present understanding of its role in the regulation of microtubules dynamics during cell-cycle progression. We also describe briefly other less mature avenues of investigation which suggest that stathmin may participate in other important biological functions and speculate about the future directions that research in this rapidly developing field may take.  相似文献   

13.
The ultrastructure of the metaphase mitotic apparatus has been studied in the KEPV cells during 6 hours after the removal of 2-mercaptoethanol (0.001 M). Starting from the analysis of chromosome disposition, the structures of the kinetochore regions and of the mitotic spindle poles, and the degree of integrity of the mitotic spindle microtubules, six types of metaphase cells were revealed. A comparison of the results of the present paper with those of the earlier studies enabled us to present the dynamics of the metaphase mitotic apparatus reconstruction. Four basic stages are revealed in this process. At the first stage, the K-metaphase centrioles form diplosomes again, the number and extent of kinetochore microtubules increase too. At the second stage, the metaphase plate forms, but interpolar and astral microtubules are absent. At the third stage, the structure of the kinetochore regions becomes normal. Thus, the metaphase plate may have formed before the orientation of kinetochores to the poles took place. At the fourth stage, the interpolar and astral microtubules appear; the mitotic spindle reestablishes completely. It is supposed that the formation and functioning of the mitotic apparatus is not confined to the interaction of microtubules of different types.  相似文献   

14.
Mitotic spindle formation in animal cells involves microtubule nucleation from two centrosomes that are positioned at opposite sides of the nucleus. Microtubules are captured by the kinetochores and stabilized. In addition, microtubules can be nucleated independently of the centrosome and stabilized by a gradient of Ran—GTP, surrounding the mitotic chromatin. Complex regulation ensures the formation of a bipolar apparatus, involving motor proteins and controlled polymerization and depolymerization of microtubule ends. The bipolar apparatus is, in turn, responsible for faithful chromosome segregation. During recent years, a variety of experiments has indicated that defects in specific motor proteins, centrosome proteins, kinases and other proteins can induce the assembly of aberrant spindles with a monopolar morphology or with poorly separated poles. Induction of monopolar spindles may be a useful strategy for cancer therapy, since ensuing aberrant mitotic exit will usually lead to cell death. In this review, we will discuss the various underlying molecular mechanisms that may be responsible for monopolar spindle formation.  相似文献   

15.
The formation and maintenance of the bipolar mitotic spindle apparatus require a complex and balanced interplay of several mechanisms, including the stabilization and separation of polar microtubules and the action of various microtubule motors. Nonmicrotubule elements are also present throughout the spindle apparatus and have been proposed to provide a structural support for the spindle. The Nuclear-Mitotic Apparatus protein (NuMA) is an abundant 240 kD protein that is present in the nucleus of interphase cells and concentrates in the polar regions of the spindle apparatus during mitosis. Sequence analysis indicates that NuMA possesses an unusually long alpha-helical central region characteristic of many filament forming proteins. In this report we demonstrate that microinjection of anti-NuMA antibodies into interphase and prophase cells results in a failure to form a mitotic spindle apparatus. Furthermore, injection of metaphase cells results in the collapse of the spindle apparatus into a monopolar microtubule array. These results identify for the first time a nontubulin component important for both the establishment and stabilization of the mitotic spindle apparatus in multicellular organisms. We suggest that nonmicrotubule structural components may be important for these processes.  相似文献   

16.
ATP-dependent calcium sequestration was previously localized in vesicles of mitotic apparatus isolated from sea urchins. We now demonstrate that the mitotic apparatus contains an ATP-regenerative system characterized as creatine kinase (EC 2.7.3.2). Mitotic apparatus isolated with vesicles intact converted ADP to ATP if phosphocreatine was present. Omission of ADP or phosphocreatine gave negligible ATP. When mitotic apparatus were washed with detergent-containing buffer to remove vesicles, their ability to produce ATP from ADP and phosphocreatine was reduced. Assays of creatine kinase activity using NADP+:glucose-6-phosphate dehydrogenase indicated that 70% of the creatine kinase activity was extractable with 0.5% Triton X-100. The insoluble residue containing the skeleton of the mitotic apparatus had the rest of the activity. Experiments with a luciferin/luciferase assay showed that Triton removed above 82% of the activity. Preparations of intact mitotic apparatus were free of cytochrome c oxidase (EC 1.9.3.1) activity and therefore free of mitochondria. About 10(8) mitotic apparatus (total volume about 1 liter) could produce 17 mmol of ATP/min when substrates were not limiting. The creatine kinase enzyme activity described herein and the previously described membrane vesicular calcium sequestration system are nonmitochondrial, integral constituents of the sea urchin mitotic apparatus.  相似文献   

17.
Summary Secretory vesicles involved in cell wall synthesis (wall vesicles) and the Golgi apparatus have been compared in conventionally fixed and freeze substituted hyphae of the oomycete fungusSaprolegnia ferax. Wall vesicles freeze substituted in various fluids range from spherical to tubular and contain an intensely staining, phosphorous rich matrix. In contrast diverse conventional fixations cause artefactual constrictions in most tubular vesicles and loss of their intensely staining contents. These data are interpreted to show the existence of an intravesicular skeletal system, with cellular regulation, to determine vesicle morphology and intravesicular synthesis of a hypothetical phosphorylated glycolipid cell wall precursor. Whilst freeze substitution gives superior preservation of wall vesicle morphology, it does not demonstrate any preferential association between wall vesicles and microtubules thus suggesting that microtubules are only indirectly involved in wall vesicle transport. Freeze substitution is superior to conventional fixation for analysis of the Golgi apparatus because it uniquely reveals both differentiation of a specific single cisterna in each Golgi body and greater differences in membrane thicknesses throughout the endomembrane system.  相似文献   

18.
Smooth membrane-limited vesicles and cisternae are closely associated with spindle microtubules in mitotic pulmonary trunk smooth muscle cells of the rabbit. This may play a regulatory role in the structure-function integrity of the spindle.  相似文献   

19.
Equilibrium between mitotic microtubules and tubulin is analyzed, using birefringence of mitotic spindle to measure microtubule concentration in vivo. A newly designed temperature-controlled slide and miniature, thermostated hydrostatic pressure chamber permit rapid alteration of temperature and of pressure. Stress birefringence of the windows is minimized, and a system for rapid recording of compensation is incorporated, so that birefringence can be measured to 0.1 nm retardation every few seconds. Both temperature and pressure data yield thermodynamic values (delta H similar to 35 kcal/mol, delta S similar to 120 entropy units [eu], delta V similar to 400 ml/mol of subunit polymerized) consistent with the explanation that polymerization of tubulin is entropy driven and mediated by hydrophobic interactions. Kinetic data suggest pseudo-zero-order polymerization and depolymerization following rapid temperature shifts, and a pseudo-first-order depolymerization during anaphase at constant temperature. The equilibrium properties of the in vivo mitotic microtubules are compared with properties of isolated brain tubules.  相似文献   

20.
The Golgi apparatus (GA) is a membranous organelle composed of stacked cisterns with associated vesicles. This study was undertaken to determine its origin in rat parotid acinar cells. The morphogenesis of the GA could be recognized in the developmental process as well as in mitotic division of cells. EM studies depicted an aggregation of small vesicles in the early stage of postnatal development or mitosis, that appeared to be the rudimental element of GA. Brefeldin A induced rapid degradation of the cisternal structure to vesicular aggregates. Reconstruction of the GA structure based on these remnant vesicles was observed upon removal of the drug. Similar membranous assembly could be observed after destruction of microtubules. These membranous aggregates presumably corresponded to 'buds of the GA' in parotid acinar cells. However, conventional cytochemical markers for GA were not detected on such immature form of GA. We found that the GA matrix protein GM130 and osmium reductivity (a classical marker for cis-Golgi elements) were consistently localized in the GA elements. Therefore, immunohistochemical distribution of GM130 and osmium impregnation of parotid acinar cells were studied under various dynamic conditions that produced structural modification of the GA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号