共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Smith CL Horowitz-Scherer R Flanagan JF Woodcock CL Peterson CL 《Nature structural biology》2003,10(2):141-145
Elucidating the mechanism of ATP-dependent chromatin remodeling is one of the largest challenges in the field of gene regulation. One of the missing pieces in understanding this process is detailed structural information on the enzymes that catalyze the remodeling reactions. Here we use a combination of subunit radio-iodination and scanning transmission electron microscopy to determine the subunit stoichiometry and native molecular weight of the yeast SWI/SNF complex. We also report a three-dimensional reconstruction of yeast SWI/SNF derived from electron micrographs. 相似文献
4.
5.
Promoter targeting and chromatin remodeling by the SWI/SNF complex 总被引:29,自引:0,他引:29
6.
The recent identification of cardiac progenitor cells (CPCs) provides a new paradigm for studying and treating heart disease.To realize the full potential of CPCs for therapeutic purposes,it is essenti... 相似文献
7.
8.
Dissecting the molecular mechanisms that guide the proper development of epicardial cell lineages is critical for understanding the etiology of both congenital and adult forms of human cardiovascular disease. In this study, we describe the function of BAF180, a polybromo protein in ATP-dependent SWI/SNF chromatin remodeling complexes, in coronary development. Ablation of BAF180 leads to impaired epithelial-to-mesenchymal-transition (EMT) and arrested maturation of epicardium around E11.5. Three-dimensional collagen gel assays revealed that the BAF180 mutant epicardial cells indeed possess significantly compromised migrating and EMT potentials. Consequently, the mutant hearts form abnormal surface nodules and fail to develop the fine and continuous plexus of coronary vessels that cover the entire ventricle around E14. PECAM and α-SMA staining assays indicate that these nodules are defective structures resulting from the failure of endothelial and smooth muscle cells within them to form coronary vessels. PECAM staining also reveal that there are very few coronary vessels inside the myocardium of mutant hearts. Consistent with this, quantitative RT-PCR analysis indicate that the expression of genes involved in FGF, TGF, and VEGF pathways essential for coronary development are down-regulated in mutant hearts. Together, these data reveal for the first time that BAF180 is critical for coronary vessel formation. 相似文献
9.
10.
Protein complexes of the SWI/SNF family remodel nucleosome structure in an ATP-dependent manner. Each complex contains between 8 and 15 subunits, several of which are highly conserved between yeast, Drosophila, and humans. We have reconstituted an ATP-dependent chromatin remodeling complex using a subset of conserved subunits. Unexpectedly, both BRG1 and hBRM, the ATPase subunits of human SWI/SNF complexes, are capable of remodeling mono-nucleosomes and nucleosomal arrays as purified proteins. The addition of INI1, BAF155, and BAF170 to BRG1 increases remodeling activity to a level comparable to that of the whole hSWI/SNF complex. These data define the functional core of the hSWI/SNF complex. 相似文献
11.
12.
13.
14.
15.
ySWI/SNF complex belongs to a family of enzymes that use the energy of ATP hydrolysis to remodel chromatin structure. Here we examine the role of DNA topology in the mechanism of ySWI/SNF remodeling. We find that the ability of ySWI/SNF to enhance accessibility of nucleosomal DNA is nearly eliminated when DNA topology is constrained in small circular nucleosomal arrays and that this inhibition can be alleviated by topoisomerases. Furthermore, we demonstrate that remodeling of these substrates does not require dramatic histone octamer movements or displacement. Our results suggest a model in which ySWI/SNF remodels nucleosomes by using the energy of ATP hydrolysis to drive local changes in DNA twist. 相似文献
16.
Activity-dependent neuroprotective protein constitutes a novel element in the SWI/SNF chromatin remodeling complex 总被引:1,自引:0,他引:1
Complete deficiency in activity-dependent neuroprotective protein (ADNP), a heterochromatin 1-binding protein, results in dramatic changes in gene expression, neural tube closure defects, and death at gestation day 9 in mice. To further understand the cellular roles played by ADNP, the HEK293 human embryonic kidney cell line that allows efficient transfection with recombinant DNA was used as a model for the identification of ADNP-interacting proteins. Recombinant green fluorescent protein (GFP)-ADNP was localized to cell nuclei. When nuclear extracts were subjected to immunoprecipitation with specific GFP antibodies followed by polyacrylamide gel electrophoresis, several minor protein bands were observed in addition to GFP-ADNP. In-gel protein digests followed by mass spectrometry identified BRG1, BAF250a, and BAF170, all components of the SWI/SNF (mating type switching/sucrose nonfermenting) chromatin remodeling complex, as proteins that co-immunoprecipitate with ADNP. These results were verified utilizing BRG1 antibodies. ADNP short hairpin RNA down-regulation resulted in microtubule reorganization and changes in cell morphology including reduction in cell process formation and cell number. These morphological changes are closely associated with the SWI/SNF complex multifunctionality. Taken together, the current study uncovers a molecular basis for the essential function of the ADNP gene and protein. 相似文献
17.
Kuroda Y Oma Y Nishimori K Ohta T Harata M 《Biochemical and biophysical research communications》2002,299(2):328-334
Actin-related proteins share significant homology with conventional actins and are classified into subfamilies based on the similarity of their sequences and functions. The Arp4 subfamily of Arps is localized in the nucleus, and a mammalian isoform, ArpNbeta (also known as BAF53), is a component of the chromatin remodeling and histone acetyltransferase complexes. Another isoform identified in humans, ArpNalpha has scarcely been characterized yet. We identified mouse ArpNalpha, and showed that ArpNalpha is more similar between humans and mice than ArpNbeta. No difference was observed between ArpNalpha and beta in subcellular localization and interaction with BRM, which is an ATPase subunit of mammalian SWI/SNF chromatin remodeling complex. However, ArpNalpha was expressed exclusively in the brain and its expression was induced during neural differentiation of P19 mouse embryonic carcinoma cells. ArpNalpha is the first brain-specific component of a chromatin remodeling complex to be identified, suggesting that ArpNalpha has conserved and important roles in the differentiation of neural cells through regulation of chromatin structure. 相似文献
18.
19.