首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endocrine disrupting chemicals (EDCs) may potentially worsen infectious diseases because EDCs disturb human immune function by interfering with endocrine balance. To evaluate the influence of EDCs on the innate immune function of macrophages, we investigated the effects of 37 possible EDCs on lipopolysaccharide-induced activation of the IFN-beta promoter. Alachlor, atrazine, benomyl, bisphenol A, carbaryl, diethyl phthalate, dipropyl phthalate, kelthane, kepone, malathion, methoxychlor, octachlorostyrene, pentachlorophenol, nonyl phenol, p-octylphenol, simazine and ziram all inhibited the activation. Kepone and ziram showed strong inhibitory effects. Aldicarb, amitrole, benzophenone, butyl benzyl phthalate, 2,4-dichlorophenoxy acetic acid, dibutyl phthalate, 2,4-dichlorophenol, dicyclohexyl phthalate, diethylhexyl adipate, diethylhexyl phthalate, dihexyl phthalate, di-n-pentyl phthalate, methomyl, metribuzin, nitrofen, 4-nitrotoluene, permethrin, trifluralin, 2,4,5-trichlorophenoxyacetic acid and vinclozolin had no significant effects at 100 muM. These results indicate that some agrochemicals and resin-related chemicals may potentially inhibit macrophage function, which suggests that endocrine disruptors may influence the development of infectious diseases.  相似文献   

2.
Repeated exposure to low doses of endotoxin results in progressive hyporesponsiveness to subsequent endotoxin challenge, a phenomenon known as endotoxin tolerance. In spite of its clinical significance in sepsis and characterization of the TLR4 signaling pathway as the principal endotoxin detection mechanism, the molecular determinants that induce tolerance remain obscure. We investigated the role of the TRIF/IFN-beta pathway in TLR4-induced endotoxin tolerance. Lipid A-induced homotolerance was characterized by the down-regulation of MyD88-dependent proinflammatory cytokines TNF-alpha and CCL3, but up-regulation of TRIF-dependent cytokine IFN-beta. This correlated with a molecular phenotype of defective NF-kappaB activation but a functional TRIF-dependent STAT1 signaling. Tolerance-induced suppression of TNF-alpha and CCL3 expression was significantly relieved by TRIF and IFN regulatory factor 3 deficiency, suggesting the involvement of the TRIF pathway in tolerance. Alternatively, selective activation of TRIF by poly(I:C)-induced tolerance to lipid A. Furthermore, pretreatment with rIFN-beta also induced tolerance, whereas addition of IFN-beta-neutralizing Ab during the tolerization partially alleviated tolerance to lipid A but not TLR2-induced endotoxin homo- or heterotolerance. Furthermore, IFNAR1-/- murine embryonal fibroblast and bone-marrow derived macrophages failed to induce tolerance. Together, these observations constitute evidence for a role of the TRIF/IFN-beta pathway in the regulation of lipid A/TLR4-mediated endotoxin homotolerance.  相似文献   

3.
4.
Asp(299)Gly (D299G) and, to a lesser extent, Thr(399)Ile (T399I) TLR4 polymorphisms have been associated with gram-negative sepsis and other infectious diseases, but the mechanisms by which they affect TLR4 signaling are unclear. In this study, we determined the impact of the D299G and T399I polymorphisms on TLR4 expression, interactions with myeloid differentiation factor 2 (MD2), LPS binding, and LPS-mediated activation of the MyD88- and Toll/IL-1R resistance domain-containing adapter inducing IFN-β (TRIF) signaling pathways. Complementation of human embryonic kidney 293/CD14/MD2 transfectants with wild-type (WT) or mutant yellow fluorescent protein-tagged TLR4 variants revealed comparable total TLR4 expression, TLR4-MD2 interactions, and LPS binding. FACS analyses with anti-TLR4 Ab showed only minimal changes in the cell-surface levels of the D299G TLR4. Cells transfected with D299G TLR4 exhibited impaired LPS-induced phosphorylation of p38 and TANK-binding kinase 1, activation of NF-κB and IFN regulatory factor 3, and induction of IL-8 and IFN-β mRNA, whereas T399I TLR4 did not cause statistically significant inhibition. In contrast to WT TLR4, expression of the D299G mutants in TLR4(-/-) mouse macrophages failed to elicit LPS-mediated induction of TNF-α and IFN-β mRNA. Coimmunoprecipitation revealed diminished LPS-driven interaction of MyD88 and TRIF with the D299G TLR4 species, in contrast to robust adapter recruitment exhibited by WT TLR4. Thus, the D299G polymorphism compromises recruitment of MyD88 and TRIF to TLR4 without affecting TLR4 expression, TLR4-MD2 interaction, or LPS binding, suggesting that it interferes with TLR4 dimerization and assembly of intracellular docking platforms for adapter recruitment.  相似文献   

5.
TLRs sense components of microorganisms and are critical host mediators of inflammation during infection. Different TLR agonists can profoundly alter inflammatory effects of one another, and studies suggest that the sequence of exposure to TLR agonists may importantly impact on responses during infection. We tested the hypothesis that synergy, priming, and tolerance between TLR agonists follow a pattern that can be predicted based on differential engagement of the MyD88-dependent (D) and the MyD88-independent (I) intracellular signaling pathways. Inflammatory effects of combinations of D and I pathway agonists were quantified in vivo and in vitro. Experiments used several D-specific agonists, an I-specific agonist (poly(I:C)), and LPS, which acts through both the D and I pathways. D-specific agonists included: peptidoglycan-associated lipoprotein, Pam3Cys, flagellin, and CpG DNA, which act through TLR2 (peptidoglycan-associated lipoprotein and Pam3Cys), TLR5, and TLR9, respectively. D and I agonists were markedly synergistic in inducing cytokine production in vivo in mice. All of the D-specific agonists were synergistic with poly(I:C) in vitro in inducing TNF and IL-6 production by mouse bone marrow-derived macrophages. Pretreatment of bone marrow-derived macrophages with poly(I:C) led to a primed response to subsequent D-specific agonists and vice versa, as indicated by increased cytokine production, and increased NF-kappaB translocation. Pretreatment with a D-specific agonist augmented LPS-induced IFN-beta production. All D-specific agonists induced tolerance to one another. Thus, under the conditions studied here, simultaneous and sequential activation of both the D and I pathways causes synergy and priming, respectively, and tolerance is induced by agonists that act through the same pathway.  相似文献   

6.
TLR4 is a unique TLR because downstream signaling occurs via two separate pathways, as follows: MyD88 and Toll IL-1 receptor (TIR) domain-containing adaptor-inducing IFN-beta (TRIF). In this study, we compared and contrasted the interplay of these pathways between murine dendritic cells (DCs) and macrophages during LPS stimulation. During TLR4 activation, neither pathway on its own was critical for up-regulation of costimulatory molecules in DCs, whereas the up-regulation of costimulatory molecules was largely TRIF dependent in macrophages. LPS-induced secreted factors, of which type I IFNs were one of the active components, played a larger role in promoting the up-regulation of costimulatory molecules in macrophages than DCs. In both cell types, MyD88 and TRIF pathways together accounted for the inflammatory response to LPS activation. Furthermore, signaling of both adaptors allowed maximal T cell priming by LPS-matured DCs, with MyD88 playing a larger role than TRIF. In sum, in our experimental systems, TRIF signaling plays a more important role in LPS-induced macrophage activation than in DC activation.  相似文献   

7.
Uropathogenic Escherichia coli (UPEC) is the most common etiological cause of urogenital tract infections and represents a considerable cause of immunological male infertility. We examined TLR 1-11 expression profiles in testicular cells and the functional response to infection with UPEC. All testicular cell types expressed mRNAs for at least two TLRs and, in particular, synthesis of TLR4 was induced in testicular macrophages (TM), Sertoli cells (SC), peritubular cells (PTC), and peritoneal macrophages (PM) after UPEC exposure. Even though MyD88-dependent pathways were activated as exemplified by phosphorylation of mitogen-activated protein kinases in TM, SC, PTC, and PM and by the degradation of IkappaBalpha and the nuclear translocation of NF-kappaB in PTC and PM, treatment with UPEC did not result in secretion of the proinflammatory cytokines IL-1alpha, IL-6, and TNF-alpha in any of the investigated cells. Moreover, stimulated production of these cytokines by nonpathogenic commensal E. coli or LPS in PM was completely abolished after coincubation with UPEC. Instead, in SC, PTC, TM, and PM, UPEC exposure resulted in activation of MyD88-independent signaling as documented by nuclear transfer of IFN-related factor-3 and elevated expression of type I IFNs alpha and beta, IFN-gamma-inducible protein 10, MCP-1, and RANTES. We conclude that in this in vitro model UPEC can actively suppress MyD88-dependent signaling at different levels to prevent proinflammatory cytokine secretion by testicular cells. Thus, testicular innate immune defense is shifted to an antiviral-like MyD88-independent response.  相似文献   

8.
Acute cigarette smoke exposure of the airways (two cigarettes twice daily for three days) induces acute inflammation in mice. In this study, we show that airway inflammation is dependent on Toll-like receptor 4 and IL-1R1 signaling. Cigarette smoke induced a significant recruitment of neutrophils in the bronchoalveolar space and pulmonary parenchyma, which was reduced in TLR4-, MyD88-, and IL-1R1-deficient mice. Diminished neutrophil influx was associated with reduced IL-1, IL-6, and keratinocyte-derived chemokine levels and matrix metalloproteinase-9 activity in the bronchoalveolar space. Further, cigarette smoke condensate (CSC) induced a macrophage proinflammatory response in vitro, which was dependent on MyD88, IL-1R1, and TLR4 signaling, but not attributable to LPS. Heat shock protein 70, a known TLR4 agonist, was induced in the airways upon smoke exposure, which probably activates the innate immune system via TLR4/MyD88, resulting in airway inflammation. CSC-activated macrophages released mature IL-1beta only in presence of ATP, whereas CSC alone promoted the TLR4/MyD88 signaling dependent production of IL-1alpha and pro-IL-1beta implicating cooperation between TLRs and the inflammasome. In conclusion, acute cigarette exposure results in LPS-independent TLR4 activation, leading to IL-1 production and IL-1R1 signaling, which is crucial for cigarette smoke induced inflammation leading to chronic obstructive pulmonary disease with emphysema.  相似文献   

9.
Fulminant hepatic failure (FHF) is a lethal clinical syndrome characterized by the activation of macrophages and the increased production of inflammatory mediators. The purpose of this study was to investigate the effects of neohesperidin dihydrochalcone (NHDC), a widely-used low caloric artificial sweetener against FHF. An FHF experimental model was established in mice by intraperitoneal injection of D-galactosamine (d-GalN) (400 mg/kg)/lipopolysaccharides (LPS) (10 μg/kg). Mice were orally administered NHDC for 6 continuous days and at 1 h before d-GalN/LPS administration. RAW264.7 macrophages were used as an in vitro model. Cells were pre-treated with NHDC for 1 h before stimulation with LPS (10 μg/ml) for 6 h. d-GalN/LPS markedly increased the serum transaminase activities and levels of oxidative and inflammatory markers, which were significantly attenuated by NHDC. Mechanistic analysis indicated that NHDC inhibited LPS-induced myeloid differentiation factor 88 (MyD88) and TIR-containing adapter molecule (TRIF)-dependent signaling. Transient transfection of TLR4 or MyD88 siRNA inhibited the downstream inflammatory signaling. This effect could also be achieved by the pretreatment with NHDC. The fluorescence microscopy and flow cytometry results suggested that NHDC potently inhibited the binding of LPS to TLR4 in RAW264.7 macrophages. In addition, the inhibitory effect of NHDC on LPS-induced translocation of TLR4 into lipid raft domains played an important role in the amelioration of production of downstream pro-inflammatory molecules. Furthermore, the activation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) by NHDC inhibited TLR4 signaling. In conclusion, our results suggest that NHDC attenuates d-GalN/LPS-induced FHF by inhibiting the TLR4-mediated inflammatory pathway, demonstrating a new application of NHDC as a hepatoprotective agent.  相似文献   

10.
Toll-like receptors (TLRs) are pattern recognition receptors that sense a variety of pathogens, initiate innate immune responses, and direct adaptive immunity. All TLRs except TLR3 recruit the adaptor MyD88 to ultimately elicit inflammatory gene expression, whereas TLR3 and internalized TLR4 use TIR-domain-containing adaptor TRIF for the induction of type I interferon and inflammatory cytokines. Here, we identify the WD repeat and FYVE-domain-containing protein WDFY1 as a crucial adaptor protein in the TLR3/4 signaling pathway. Overexpression of WDFY1 potentiates TLR3- and TLR4-mediated activation of NF-κB, interferon regulatory factor 3 (IRF3), and production of type I interferons and inflammatory cytokines. WDFY1 depletion has the opposite effect. WDFY1 interacts with TLR3 and TLR4 and mediates the recruitment of TRIF to these receptors. Our findings suggest a crucial role for WDFY1 in bridging the TLR–TRIF interaction, which is necessary for TLR signaling.  相似文献   

11.
TLR/MyD88信号通路与自身免疫性疾病   总被引:2,自引:0,他引:2  
Toll样受体(Toll-like receptor,TLR)是近年来发现的一类模式识别受体,通过识别病原相关分子模式(pathogen-associated molecular pattern,PAMP),激活天然免疫.TLR信号还通过上调抗原提呈细胞(antigen presenting cells,APC)表面共刺激分子及APC分泌的炎症细胞因子调节获得性免疫.TLR/MyD88信号在自身免疫性疾病的发病过程中起重要作用.本文介绍了TLR/MYD88信号通路及其在自身免疫病如实验性自身免疫脑脊髓膜炎、类风湿性关节炎、实验性自身免疫性葡萄膜炎、实验性自身免疫性心肌炎和自身免疫性肾小球肾炎等发生发展中的作用.  相似文献   

12.
Recombinant hemagglutinin B (rHagB), a virulence factor of the periodontal pathogen Porphyromonas gingivalis, has been shown to induce protective immunity against bacterial infection. Furthermore, we have demonstrated that rHagB is a TLR4 agonist for dendritic cells. However, it is not known how rHagB dendritic cell stimulation affects the activation and differentiation of T cells. Therefore, we undertook the present study to examine the role of TLR4 signaling in shaping the CD4(+) T cell response following immunization of mice with rHagB. Immunization with this Ag resulted in the induction of specific CD4(+) T cells and Ab responses. In TLR4(-/-) and MyD88(-/-) but not Toll/IL-1R domain-containing adapter inducing IFN-β-deficient (TRIF(Lps2)) mice, there was an increase in the Th2 CD4(+) T cell subset, a decrease in the Th1 subset, and higher serum IgG(1)/IgG(2) levels of HagB-specific Abs compared with those in wild-type mice. These finding were accompanied by increased GATA-3 and Foxp3 expression and a decrease in the activation of CD4(+) T cells isolated from TLR4(-/-) and MyD88(-/-) mice. Interestingly, TLR4(-/-) CD4(+) T cells showed an increase in IL-2/STAT5 signaling. Whereas TRIF deficiency had minimal effects on the CD4(+) T cell response, it resulted in increased IFN-γ and IL-17 production by memory CD4(+) T cells. To our knowledge, these results demonstrate for the first time that TLR4 signaling, via the downstream MyD88 and TRIF molecules, exerts a differential regulation on the CD4(+) T cell response to HagB Ag. The gained insight from the present work will aid in designing better therapeutic strategies against P. gingivalis infection.  相似文献   

13.
14.
15.
TLRs are important for the recognition of conserved motifs expressed by invading bacteria. TLR4 is the signaling receptor for LPS, the major proinflammatory component of the Gram-negative cell wall, whereas CD14 serves as the ligand-binding part of the LPS receptor complex. Triggering of TLR4 results in the activation of two distinct intracellular pathways, one that relies on the common TLR adaptor MyD88 and one that is mediated by Toll/IL-1R domain-containing adaptor-inducing IFN-beta (TRIF). Nontypeable Haemophilus influenzae (NTHi) is a common Gram-negative respiratory pathogen that expresses both TLR4 (LPS and lipooligosaccharide) and TLR2 (lipoproteins) ligands. To determine the roles of CD14, TLR4, and TLR2 during NTHi pneumonia, the following studies were performed: 1) Alveolar macrophages from CD14 and TLR4 knockout (KO) mice were virtually unresponsive to NTHi in vitro, whereas TLR2 KO macrophages displayed a reduced NTHi responsiveness. 2) After intranasal infection with NTHi, CD14 and TLR4 KO mice showed an attenuated early inflammatory response in their lungs, which was associated with a strongly reduced clearance of NTHi from the respiratory tract; in contrast, in TLR2 KO mice, lung inflammation was unchanged, and the number of NTHi CFU was only modestly increased at the end of the 10-day observation period. 3) MyD88 KO, but not TRIF mutant mice showed an increased bacterial load in their lungs upon infection with NTHi. These data suggest that the MyD88-dependent pathway of TLR4 is important for an effective innate immune response to respiratory tract infection caused by NTHi.  相似文献   

16.
The innate immune system elicits the first wave of immune responses against pathogen infection. Its operational modes are complex and have yet to be defined. Here, we report the identification of an innate immune regulator termed TAPE (TBK1-associated protein in endolysosomes), previously known as CC2D1A/Freud-1/Aki-1, which modulates the TLR3 and TLR4 pathways. We found that TAPE activated the TBK1, NF-κB, and ERK pathways leading to IFN-β and inflammatory cytokine induction. TAPE was shown to colocalize with endosomal marker Rab5 and lysosomal marker LAMP1 in mammalian cells, suggesting that TAPE resided in endolysosomes. Knockdown of TAPE selectively impaired the TLR3 and endocytic TLR4 pathways to IFN-β induction. Furthermore, TAPE interacted and synergized with Trif to activate IFN-β. TAPE knockdown failed to block Trif-mediated IFN-β induction, whereas Trif knockdown impaired the TLR3 and TAPE cooperation on IFN-β induction, suggesting that TAPE acts upstream of Trif. Together, our data demonstrate a central role for TAPE in linking TLR3 and TLR4 to innate immune defenses at an early step.  相似文献   

17.
Experimental and clinical studies link Chlamydia pneumoniae infection to atherogenesis and atherothrombotic events, but the underlying mechanisms are unclear. We tested the hypothesis that C. pneumoniae-induced acceleration of atherosclerosis in apolipoprotein E (ApoE)(-/-) mice is reciprocally modulated by activation of TLR-mediated innate immune and liver X receptor alpha (LXRalpha) signaling pathways. We infected ApoE(-/-) mice and ApoE(-/-) mice that also lacked TLR2, TLR4, MyD88, or LXRalpha intranasally with C. pneumoniae followed by feeding of a high fat diet for 4 mo. Mock-infected littermates served as controls. Atherosclerosis was assessed in aortic sinuses and in en face preparation of whole aorta. The numbers of activated dendritic cells (DCs) within plaques and the serum levels of cholesterol and proinflammatory cytokines were also measured. C. pneumoniae infection markedly accelerated atherosclerosis in ApoE-deficient mice that was associated with increased numbers of activated DCs in aortic sinus plaques and higher circulating levels of MCP-1, IL-12p40, IL-6, and TNF-alpha. In contrast, C. pneumoniae infection had only a minimal effect on atherosclerosis, accumulation of activated DCs in the sinus plaques, or circulating cytokine increases in ApoE(-/-) mice that were also deficient in TLR2, TLR4, or MyD88. However, C. pneumoniae-induced acceleration of atherosclerosis in ApoE(-/-) mice was further enhanced in ApoE(-/-)LXRalpha(-/-) double knockout mice and was accompanied by higher serum levels of IL-6 and TNF-alpha. We conclude that C. pneumoniae infection accelerates atherosclerosis in hypercholesterolemic mice predominantly through a TLR/MyD88-dependent mechanism and that LXRalpha appears to reciprocally modulate and reduce the proatherogenic effects of C. pneumoniae infection.  相似文献   

18.
19.
20.
Selvarajoo K 《FEBS letters》2006,580(5):1457-1464
To understand differential time activation of nuclear factor kappaB (NF-kappaB) and the temporal features of the downstream pro-inflammatory cytokines' [tumour-necrosis-factor-alpha (TNF-alpha) and IP-10] mRNA levels in myeloid differentiation primary-response protein 88 (MyD88) knockouts (KOs), I developed a computational model of the TLR4 pathway. The result suggests that the late phase expression of NF-kappaB activity observed in MyD88 KOs is possibly due to a number of novel intermediates acting along the MyD88-independent pathway. I also simulate that the TNF-alpha levels will increase at a longer time in MyD88 KOs, not previously mentioned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号