首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
《Autophagy》2013,9(5):658-659
Axonal degeneration is a pathological hallmark of many traumatic and neurodegenerative neurological disorders. Although the underlying mechanisms remain largely unclear, increased autophagy and the influx of extracellular calcium have been implicated in the pathogenesis of axonal degeneration based on in vitro data. Using in vivo imaging of the rat optic nerve after crush lesion we could now show that both mechanisms are linked and play an important role in acute axonal degeneration in vivo. Our data suggest that crush lesion of the optic nerve induces a rapid calcium influx through calcium channels, which results in a secondary induction of autophagy that participates actively in axonal degradation. Therapeutic manipulation of both events could significantly alter the time course of acute axonal degeneration in vivo and may thus represent promising therapeutic targets for the future.  相似文献   

2.
3.
4.
Dystrophin is a cytoskeletal protein which is thought to play an important role in membrane physiology since its absence (due to gene deficiency) leads to the symptoms of Duchenne muscular dystrophy (DMD). Some disruption in the regulation of intracellular free Ca2+ levels could lead to DMD-like symptoms. In this study, calpains, which are very active calcium-dependent proteases, were examined for their capacity to hydrolyse dystrophin in vitro. The results show that calpains are able to split dystrophin and produce breakdown products of different sizes (the degree of cleavage being dependent on the incubation time with proteases). The time-course of protease degradation was examined by Western immunoblot using three polyclonal sera which were characterized as being specific to the central (residues 1173-1728) and two distal parts of the molecule ie specific to the N-terminal (residues 43-760) or the C-terminal (residues 3357-3660) extremities of the dystrophin molecule. The cleavage patterns of dystrophin showed an accumulation of some major protease-resistant fragments of high relative molecular mass (250-370 kDa). These observations demonstrate that calpains digest dystrophin very rapidly when the calcium concentration is compatible with their activation. For instance, it is clear that calpains first give rise to large dystrophin products in which the C-terminal region is lacking. These observations suggest that dystrophin antibodies specific to the central domain of the molecule should be used to detect dystrophin for diagnostic purposes and before any conclusion as to the presence or absence of dystrophin can be deduced from results obtained using immunoanalyses of muscle biopsies.  相似文献   

5.
Human neutrophils expressing complement receptor 3 (CR3) were treated with various concentrations (0.04-10 mM) of Ca2+/Mg(2+)-chelating agent EDTA and the expression of CD11b, the CR3 alpha chain antigenic epitope, was examined using monoclonal antibodies and flow cytometry. EDTA caused a dose-dependent decrease in the reactivity of two anti-CD11b monoclonal antibodies, Leu15 and IOM1. The reduced expression of CD11b in EDTA-treated cells was partly restored by the addition of Ca2+ ions whereas the addition of Mg2+ ions had no effect on CD11b level. The expression of the CR3 beta chain epitope, CD18, was markedly decreased only by 10 mM EDTA. These results suggest that the CD11b epitope may be associated with the Ca(2+)-binding domains of CR3 alpha chain and its recognition by antibodies depends on the presence of bound Ca2+.  相似文献   

6.
The study addressed the question of the functional significance of various isoforms of dystrophin. Mice bearing two different alterations of the dystrophin gene, mdx and mdx-beta geo, were examined. Dystrophic mice with mdx mutation do not express full-length dystrophins, while they express short dystrophins; on the other hand, the dystrophic mice with mdx-beta geo mutation express neither full-length nor short dystrophins. We found pathological changes typical for muscular dystrophy in the diaphragm of both mutant strains. No pathological changes were found in brains of either mdx or mdx-beta geo mutants. We concluded tentatively that short isoforms of dystrophin do not contribute to the muscular dystrophy and that they do not play any role in the development and maintenance of histological structure of the brain.  相似文献   

7.
Duchenne muscular dystrophy (DMD) is a progressive muscle‐wasting disorder, caused by mutations in the DMD gene and the resulting lack of dystrophin. The DMD gene has seven promoters, giving rise to multiple full‐length and shorter isoforms. Besides the expression of dystrophin in muscles, the majority of dystrophin isoforms is expressed in brain and dystrophinopathy can lead to cognitive deficits, including intellectual impairments and deficits in executive function. In contrast to the muscle pathology, the impact of the lack of dystrophin on the brain is not very well studied. Here, we study the behavioral consequences of a lack of full‐length dystrophin isoforms in mdx mice, particularly with regard to domains of executive functions and anxiety. We observed a deficit in cognitive flexibility in mdx mice in the absence of motor dysfunction or general learning impairments using two independent behavioral tests. In addition, increased anxiety was observed, but its expression depended on the context. Overall, these results suggest that the absence of full‐length dystrophin in mice has specific behavioral effects that compare well to deficits observed in DMD patients.  相似文献   

8.
The dystrophin protein complex (DPC), composed of dystrophin and associated proteins, is essential for maintaining muscle membrane integrity. The link between mutations in dystrophin and the devastating muscle failure of Duchenne's muscular dystrophy (DMD) has been well established. Less well appreciated are the accompanying cognitive impairment and neuropsychiatric disorders also presented in many DMD patients, which suggest a wider role for dystrophin in membrane-cytoskeleton function. This study provides genetic evidence of a novel role for DYS-1/dystrophin in maintaining neural organization in Caenorhabditis elegans. This neuronal function is distinct from the established role of DYS-1/dystrophin in maintaining muscle integrity and regulating locomotion. SAX-7, an L1 cell adhesion molecule (CAM) homologue, and STN-2/γ-syntrophin also function to maintain neural integrity in C. elegans. This study provides biochemical data that show that SAX-7 associates with DYS-1 in an STN-2/γ-syntrophin-dependent manner. These results reveal a recruitment of L1CAMs to the DPC to ensure neural integrity is maintained.  相似文献   

9.
10.
Fesselin is a basic protein isolated from smooth muscle which binds G-actin and accelerates its polymerization as well as cross-links assembled filaments [J. Muscle Res. Cell Motil. 20 (1999) 539; Biochemistry 40 (2001) 14252]. In this report experimental evidence is provided for the first time proving that fesselin can interact with calmodulin in a Ca(2+)-dependent manner in vitro. Using ion exchange, followed by calmodulin-affinity chromatography, enabled us to simplify and shorten the fesselin preparation procedure and increase its yield by about three times in comparison to the procedure described by Leinweber et al. [J. Muscle Res. Cell Motil. 20 (1999) 539]. Fesselin interaction with dansyl-labelled calmodulin causes a 2-fold increase in maximum fluorescence intensity of the fluorophore and a 21nm blue shift of the spectrum. The transition of complex formation between fesselin and calmodulin occurs at submicromolar concentration of calcium ions. The dissociation constant of fesselin Ca(2+)/calmodulin complexes amounted to 10(-8)M. The results suggest the existence of a direct link between Ca(2+)/calmodulin and fesselin at the level of actin cytoskeleton dynamics in smooth muscle.  相似文献   

11.
On a small island of Rab, geographical latitude 44 degrees 40' N, with the highest solar radiation among Adriatic islands, 1371 patients were examined in 2003-2005 period, with the aim of estimating the frequency of the patients number with Age-related Macular Degeneration (AMD), and further if the peripheral retina is damaged similarly as the macular region. In the first group of agriculturists and fishermen (n = 1300) we estimated the AMD, initial and middle stage of AMD, in 18% of population, but in urban population only by 2 patients. Perimetric analysis with computerized Kowa perimeter, estimated that the peripheral retina is affected similarly as the macular region. Author concludes that for this reason, the usual term of "Age-related Macular Degeneration" should necessarily be named with the suffix "Peripheral", or "Age-related Retinopathy".  相似文献   

12.
Ceramide kinase (CERK) catalyzes the conversion of ceramide to ceramide 1-phosphate (C1P) and is known to be activated by calcium. Although several groups have examined the functions of CERK and its product C1P, the functions of C1P and CERK are not understood. We studied the RBL-2H3 cell line, a widely used model for mast cells, and found that CERK and C1P are required for activation of the degranulation process in mast cells. We found that C1P formation was enhanced during activation induced by IgE/antigen or by Ca(2+) ionophore A23187. The formation of C1P required the intracellular elevation of Ca(2+). We generated RBL-2H3 cells that stably express CERK, and when these cells were treated with A23187, a concomitant C1P formation was observed and degranulation increased 4-fold, compared with mock transfectants. The cell-permeable N-acetylsphingosine (C(2)-ceramide), a poor substrate of CERK, inhibited both the formation of C1P and degranulation, indicating that C1P formation was necessary for degranulation. Exogenous introduction of CERK into permeabilized RBL-2H3 cells caused degranulation. We identified a cytosolic localization of CERK that provides exposure to cytosolic Ca(2+). Taken together, these results indicate that C1P formation is a necessary step in the degranulation pathway in RBL-2H3 cells.  相似文献   

13.
Double-stranded RNA-binding proteins function in regulating the stability, translation, and localization of specific mRNAs. In this study, we have demonstrated that the neuron-specific, calcium-binding protein, visinin-like protein (VILIP) contains one double-stranded RNA-binding domain, a protein motif conserved among many double-stranded RNA-binding proteins. We showed that VILIP can specifically bind double-stranded RNA, and this interaction specifically requires the presence of calcium. Mobility shift studies indicated that VILIP binds double-stranded RNA as a single protein-RNA complex with an apparent equilibrium dissociation constant of 9.0 x 10(-6) M. To our knowledge, VILIP is the first double-stranded RNA-binding protein shown to be calcium-dependent. Furthermore, VILIP specifically binds the 3'-untranslated region of the neurotrophin receptor, trkB, an mRNA localized to hippocampal dendrites in an activity-dependent manner. Given that VILIP is also expressed in the hippocampus, these data suggest that VILIP may employ a novel, calcium-dependent mechanism to regulate its binding to important localized mRNAs in the central nervous system.  相似文献   

14.
The dystrophin gene is autosomally located on a microchromosome in chicken   总被引:1,自引:0,他引:1  
The dystrophin gene has been mapped to a pair of microchromosomes in Gallus domesticus. In situ hybridization using a pool of biotinylated human cDNA probes allowed detection of this huge single-copy sequence without having to employ isotopic labeling. The autosomal nature of the DMD gene in chicken is supported by molecular data from quantitative Southern blot analysis and is in sharp contrast to that in all eutherian mammals studied, where it is a characteristically X-linked locus. With previous data taken into consideration, these results should prove significant in understanding the evolution of sex chromosomes during speciation as well as highlighting the importance of avian microchromosomes.  相似文献   

15.
The concentration, activity, and distribution of calcium-dependent proteases (calpains) are compared in dystrophin-deficient (mdx) and control mouse muscle. Calpains have been implicated previously as the protease responsible for the observed necrosis in dystrophin-deficient human muscle. Although these mouse and human muscular dystrophies have been attributed to similar genetic defects, the mouse dystrophy shows a brief necrotic episode while the human deficiency results in progressive, lethal muscle necrosis. Findings of the present study show that control mouse muscle contains more calcium-dependent proteolytic activity than dystrophin-deficient muscle. Paradoxically, adult, dystrophin-deficient mouse muscle contains higher concentrations of calpain than found in controls. Furthermore, indirect immunofluorescence using antisera produced against an oligopeptide found in the proteolytic domain of calpain shows that calpain distribution in dystrophin-deficient muscle is dispersed throughout the cytoplasm while immunolabeling of control muscle shows calpain concentrated at Z-discs. This redistribution is consistent with calpain activation in dystrophic muscle. These findings indicate that mdx mice possess the capability of suppressing calpain-mediated proteolysis. We speculate that this suppression may enable dystrophin-deficient mouse muscle to arrest necrosis and regenerate successfully.  相似文献   

16.
17.
18.
Eukaryotic cells from fungal hyphae to neurites that grow by polarized extension must coordinate cell growth and cell orientation to enable them to exhibit growth tropisms and to respond to relevant environmental cues. Such cells generally maintain a tip-high Ca(2+) cytoplasmic gradient, which is correlated with their ability to exhibit polarized tip growth and to respond to growth-directing extracellular signals. In yeast and other fungi, the polarisome, exocyst, Arp2/3, and Spitzenk?rper protein complexes collectively orchestrate tip growth and cell polarity, but it is not clear whether these molecular complexes also regulate cell orientation or whether they are influenced by cytoplasmic Ca(2+) gradients. Hyphae of the human pathogenic fungus Candida albicans reorient their growth axis in response to underlying surface topography (thigmotropism) and imposed electric fields (galvanotropism). The establishment and maintenance of directional growth in relation to these environmental cues was Ca(2+) dependent. Tropisms were attenuated in media containing low Ca(2+), or calcium-channel blockers, and in mutants where calcium channels or elements of the calcium signaling pathway were deleted. Therefore galvanotropism and thigmotropism may both be mediated by localized Ca(2+) influx at sites of polarized growth via Ca(2+) channels that are activated by appropriate environmental signals.  相似文献   

19.
A Ca2+-dependent protein kinase of Tetrahymena thermophila has been partially purified and characterized. The molecular mass of the enzyme is less than that of similar enzymes (for example protein kinase C), being about 55 kDa. After purification and in the presence of Ca2+ the enzyme activity increased. The promoter of protein kinase C (PKC) activity, phorbol myristate acetate (PMA), increased the activity while the protein kinase inhibitor H-7 decreased the activity of the enzyme. The experiments demonstrate the presence, activity and similarity to vertebrate enzymes of a protein kinase at a low level of phylogeny.  相似文献   

20.
We aimed at elucidating the molecular basis of c-fos promoter activation in vascular endothelial cells (ECs) in response to shear stress, with emphases on Rho family GTPases (Rho, Cdc42, and Rac) and intracellular calcium. Dominant-negative and constitutively activated mutants of these GTPases were used to block the action of upstream signals and to activate the downstream pathways, respectively. The role of intracellular calcium was assessed with intracellular calcium chelators. Only Rho, but not Cdc42 or Rac, is involved in the shear stress induction of c-fos. This Rho-mediated shear-induction of c-fos is dependent on intracellular calcium, but not on the Rho effector p160ROCK or actin filaments. While the inhibition of p160ROCK and its ensuing disruption of actin filaments decreased the basal c-fos activity in static ECs (no flow), it did not affect the shear-inductive effect. The calcium chelator BAPTA-AM inhibits the shear-induction, as well as the static level, of c-fos activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号