首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Celecoxib is a cyclooxygenase-2 specific inhibitor, that has been recently and intensively prescribed as an anti-inflammatory drug in rheumatic osteoarthiritis. A robust, highly reliable and reproducible liquid chromatographic–mass spectrometric assay is developed for the determination of celecoxib in human plasma using sulindac as an internal standard. The run cycle-time is <4 min. The assay method involved extraction of the analytes from plasma samples at pH 5 with ethyl acetate and evaporation of the organic layer. The reconstituted solution of the residue was injected onto a Shim Pack GLC-CN, C18 column and chromatographed with a mobile phase comprised of acetonitrile–1% acetic acid solution (4:1) at a flow-rate of 1 ml/min. The mass spectrometer (LCQ Finnigan Mat) was programmed in the positive single-ion monitoring mode to permit the detection and quantitation of the molecular ions of celecoxib and sulindac at m/z 382 and 357, respectively. The peak area ratio of celecoxib/sulindac and concentration are linear (r2>0.994) over the concentration range 50–1000 ng/ml with a lowest detection limit of 20 ng/ml of celecoxib. Within- and between-day precision are within 1.58–4.0% relative standard deviation and the accuracy is 99.4–107.3% deviation of the nominal concentrations. The relative recoveries of celecoxib from human plasma ranged from 102.4 to 103.3% indicating the suitability of the method for the extraction of celecoxib and I.S. from plasma samples. The validated LC–MS method has been utilized to establish various pharmacokinetic parameters of celecoxib following a single oral dose administration of celecoxib capsules in two selected volunteers.  相似文献   

2.
For the first time, an LC–MS–MS method has been developed for the simultaneous analysis of buprenorphine (BUP), norbuprenorphine (NBUP), and buprenorphine–glucuronide (BUPG) in plasma. Analytes were isolated from plasma by C18 SPE and separated by gradient RP-LC. Electrospray ionization and MS–MS analyses were carried out using a PE-Sciex API-3000 tandem mass spectrometer. The m/z 644→m/z 468 transition was monitored for BUPG, whereas for BUP, BUP-d4, NBUP, and NBUP-d3 it was necessary to monitor the surviving parent ions in order to achieve the required sensitivity. The method exhibited good linearity from 0.1 to 50 ng/ml (r2≥0.998). Extraction recovery was higher than 77% for BUPG and higher than 88% for both BUP and NBUP. The LOQ was established at 0.1 ng/ml for the three analytes. The method was validated on plasma samples collected in a controlled intravenous and sublingual buprenorphine administration study. Norbuprenorphine–glucuronide was also tentatively detected in plasma by monitoring the m/z 590→m/z 414 transition.  相似文献   

3.
We report here the development and validation of an LC–MS method for quantitation of loperamide (LOP) and its N-demethyl metabolite (DMLOP) in human plasma. O-Acetyl-loperamide (A-LOP) was synthesized by us for use as an internal standard in the assay. After addition of the internal standard, the compounds of interest were extracted with methyl tert.-butylether and separated by HPLC on a C18 reversed-phase column using an acetonitrile–water gradient containing 20 mM ammonium acetate. The three compounds were well separated by HPLC and no interfering peaks were detected at the usual concentrations found in plasma. Analytes were quantitated using positive electrospray ionization in a triple quadrupole mass spectrometer operating in the MS–MS mode. Selected reaction monitoring was used to quantify LOP (m/z 477→266), DMLOP (m/z 463→252) and A-LOP (m/z 519→266) on ions formed by loss of the 4-(p-chlorophenyl)-4-hydroxy-piperidyl group upon low energy collision-induced dissociation. Calibration curves, which were linear over the range 1.04 to 41.7 pmol/ml (LOP) and 1.55 to 41.9 pmol/ml (DMLOP), were run contemporaneously with each batch of samples, along with low (4.2 pmol/ml), medium (16.7 pmol/ml) and high (33.4 pmol/ml) quality control samples. The lower limit of quantitation (LLQ) of LOP and DMLOP was about 0.25 pmol/ml in plasma. The extraction efficiency of LOP and DMLOP from human plasma was 72.3±1.50% (range: 70.7–73.7%) and 79.4±12.8% (64.9–88.8%), respectively. The intra- and inter-assay variability of LOP and DMLOP ranged from 2.1 to 14.5% for the low, medium and high quality control samples. The method has been used successfully to study loperamide pharmacokinetics in adult humans.  相似文献   

4.
Methods for the determination of a semi-synthetic cyclic hexapeptide (I, MK-0991) in human plasma based on high-performance liquid chromatography (HPLC) with tandem mass spectrometric (MS–MS) detection using pneumatically assisted electrospray (ion spray, ISP) and turbo ion spray (TISP) interfaces were developed. Drug and internal standard (II, an isostere of I) were isolated from plasma by solid-phase extraction (SPE). The eluent from SPE was evaporated to dryness, the residue was reconstituted in mobile phase and injected into the HPLC system. The use of ISP, TISP and heated nebulizer (HN) interfaces as sample introduction systems were evaluated and showed that the heated nebulizer was not adequate for analysis due to thermal instability and/or adsorption of I and II to glass surfaces of the interface. Compounds I and II were chromatographed on a wide pore (300 Å), 150×4.6 mm C8 analytical column, and the HPLC flow-rate of 1.2 ml/min was split 1:20 prior to introduction to the ISP or TISP interface of the mass spectrometric system. The MS–MS detection was performed on a PE Sciex API III Plus tandem mass spectrometer operated in selected reaction monitoring mode (SRM). The precursor→product ion combinations of m/z 1093.7→1033.6 and 1094.7→1033.6 were used to quantify I and II, respectively, after chromatographic separation of the analytes. The assay was validated in the concentration range of 10–1000 ng/ml using ISP, and 2.5–500 ng/ml of plasma using TISP with good precision and adequate accuracy. The effects of HPLC mobile-phase components on the ionization efficiency and sensitivity of detection in the positive ionization mode, the evaluation of the matrix effect, and limitations in sensitivity of detection of I due to the formation of multiply charged species are presented.  相似文献   

5.
A sensitive and very specific method, using liquid chromatography–electrospray mass spectrometry (LC–ES-MS), was developed for the determination of epirubicin, doxorubicin, daunorubicin, idarubicin and the respective active metabolites of the last three, namely doxorubicinol, daunorubicinol and idarubicinol in human serum, using aclarubicin as internal standard. Once thawed, 0.5-ml serum samples underwent an automated solid-phase extraction, using C18 Bond Elut cartridges (Varian) and a Zymark Rapid-Trace robot. After elution of the compounds with chloroform–2-propanol (4:1, v/v) and evaporation, the residue was reconstituted with a mixture of 5 mM ammonium formate buffer (pH 4.5)–acetonitrile (60:40, v/v). The chromatographic separation was performed using a Symmetry C18, 3.5 μm (150×1 mm I.D.) reversed-phase column, and a mixture of 5 mM ammonium formate buffer (pH 3)–acetonitrile (70:30, v/v) as mobile phase, delivered at 50 μl/min. The compounds were detected in the selected ion monitoring mode using, as quantitation ions, m/z 291 for idarubicin and idarubicinol, m/z 321 for daunorubicin and daunorubicinol, m/z 361 for epirubicin and doxorubicin, m/z 363 for doxorubicinol and m/z 812 for aclarubicin (I.S.). Extraction recovery was between 71 and 105% depending on compounds and concentration. The limit of detection was 0.5 ng/ml for daunorubicin and idarubicinol, 1 ng/ml for doxorubicin, epirubicin and idarubicin, 2 ng/ml for daunorubicinol and 2.5 ng/ml for doxorubicinol. The limit of quantitation (LOQ) was 2.5 ng/ml for doxorubicin, epirubicin and daunorubicinol, and 5 ng/ml for daunorubicin, idarubicin, doxorubicinol and idarubicinol. Linearity was verified from these LOQs up to 2000 ng/ml for the parent drugs (r≥0.992) and 200 ng/ml for the active metabolites (r≥0.985). Above LOQ, the within-day and between-day precision relative standard deviation values were all less than 15%. This assay was applied successfully to the analysis of human serum samples collected in patients administered doxorubicin or daunorubicin intravenously. This method is rapid, reliable, allows an easy sample preparation owing to the automated extraction and a high selectivity owing to MS detection.  相似文献   

6.
A rapid, selective and accurate high-performance liquid chromatography–tandem mass spectrometry assay for the quantification of sanfetrinem in human plasma has been developed and validated. The performance of manual and automated sample preparation was assessed; 50 μl of plasma sample was deproteinized with acetonitrile, followed by dilution with water and injection onto the LC system. Chromatographic separation was achieved on a Phenomenex Luna C18(2), 50×2.0 (5 μm) column with a mobile phase consisting of water–acetonitrile with 0.1% formic acid followed by detection with a Perkin-Elmer API3000 mass spectrometer in multiple reaction monitoring mode. The lower limit of quantification was improved by five times compared to the UV method previously reported. A range of concentration from 10 ng/ml to 5 μg/ml was covered. The method was applied to the quantification of sanfetrinem in human plasma samples from healthy volunteers participating in a clinical study.  相似文献   

7.
An original method based upon high-performance liquid chromatography coupled to ion spray mass spectrometry (HPLC-ISP-MS) has been developed for the identification and quantification of colchicine (COL) in human blood, plasma or urine. After single-step liquid-liquid extraction by dichloromethane at pH 8.0 using tofisopam (TOF) as an internal standard, solutes are separated on a 5-μm C18 Microbore (Alltech) column (250×1.0 mm, I.D.), using acetonitrile-2 mM NH4COOH, pH 3 buffer (75:25, v/v) as the mobile phase (flow-rate 50 μl/min). Detection is done by a Perkin-Elmer Sciex API-100 mass analyzer equipped with a ISP interface (nebulizing and curtain gas: N2, quality U; main settings: ISP, +4.0 kV; OR, +50 V; Q0, −10 V; Q1, −13 V; electron multiplier, +2.2 kV); MS data are collected as either total ion current (TIC, m/z 100–500 or 380–405), or selected ion monitoring (SIM) at m/z 400 and 383 for COL and TOF, respectively. COL mass spectrum shows a prominent molecular ion [M+H]+ at m/z 400. Increasing OR potential fails to provide a significant fragmentation. Retention times are 2.70 and 4.53 min for COL and TOF, respectively. The quantification method shows a good linearity (r = 0.998) over a concentration range from 5 to 200 ng/ml. The lower limit of detection in SIM mode is 0.6 ng/ml COL, making the method convenient for both clinical and forensic purposes.  相似文献   

8.
A high-performance liquid chromatographic assay with fluorometric detection was developed for the analysis of the stereoisomers of mivacurium, a new short-acting neuromuscular blocker, in plasma. The isomers were isolated from plasma by solid-phase extraction with C18 and anion-exchange cartridges. The extracts were chromatographed on a LiChrosphere 60 RP Select B column (125 mm × 4.6 mm I.D.) using a mobile phase of acetonitrile—water (4:6, v/v) containing 0.005 M octanesulfonic acid. The fluorescence excitation and emission wavelengths were 202 and 320 nm, respectively. The accuracy and precision of the assay, expressed as the percentage deviation of measured values from true values and the percentage coefficient of variation, respectively, were ≤ 10% at all concentrations except for the percentage coefficient of variation at the lower limit of quantitation (5 ng/ml). The assay has been successfully used for the analysis of plasma samples from a pharmacokinetic study in human volunteers.  相似文献   

9.
A rapid and sensitive liquid chromatography–electrospray ionisation mass spectrometry (HPLC–ESI-MS) assay has been developed for the measurement of moclobemide and metabolites, Ro12-5637 and Ro12-8095, in human plasma. Sample preparation (0.5 ml plasma) involves solid-phase extraction using C18 cartridges. A Nova-Pak phenyl column (Waters, 4 μm, 150×2 mm I.D.) was employed for analyte separation with a mixture of 0.2 M ammonium formate buffer, pH 3.57 and acetonitrile as the mobile phase. The within- and between-day precisions of the assay were <18% and the limit of quantification for all analytes was 0.01 μg/ml. The total run-time was 6 min. The method described was used to measure moclobemide, Ro12-5637 and Ro12-8095 in human plasma following an oral 300 mg dose.  相似文献   

10.
An original method based upon high-performance liquid chromatography coupled to electrospray ionization mass spectrometry has been developed for corticosterone (B) quantification in human serum. After extraction by diethyl ether using triamcinolone (T) as an internal standard, solutes are separated on a C18 microbore column (250×1.0 mm, I.D.), using acetonitrile–water–formic acid (40:59.9:0.1, v/v/v) as the mobile phase (flow-rate 40 μl/min). Detection is performed on an API 1 single quadrupole mass spectrometer equipped with a ESI interface and operated in positive ionization mode. Corticosterone quantifications were realized by computing peak area ratios (B/T) of the serum extracts analyzed in SIM mode (m/z 347 and m/z 395 for B and T, respectively), and comparing them with the calibration curve (r=0.998).  相似文献   

11.
A reliable high-performance liquid chromatographic method has been validated for determination of gallamine in rat plasma, muscle tissue and microdialysate samples. A C18 reversed-phase column with mobile phase of methanol and water containing 12.5 mM tetrabutyl ammonium (TBA) hydrogen sulphate (22:78, v/v) was used. The flow-rate was 1 ml/min with UV detection at 229 nm. Sample preparation involved protein precipitation with acetonitrile for plasma and muscle tissue homogenate samples. Microdialysate samples were injected into the HPLC system without any sample preparation. Intra-day and inter-day accuracy and precision of the assay were <13%. The limit of quantification was 1 μg/ml for plasma, 1.6 μg/g for muscle tissue and 0.5 μg/ml for microdialysate samples. The assay was applied successfully to analysis of samples obtained from a pharmacokinetic study in rats using the microdialysis technique.  相似文献   

12.
A sensitive LC–MS quantitation method of cetrorelix, a novel gonadotropin releasing hormone (GnRH) antagonist, was developed. Plasma and urine samples to which brominated cetrorelix was added as an internal standard (I.S.) were purified by solid-phase extraction with C8 cartridges. The chromatographic separation was achieved on a C18 reversed-phase column using acetonitrile–water–trifluoroacetic acid (35:65:0.1, v/v/v) as mobile phase. The mass spectrometric analysis was performed by electrospray ionization mode with negative ion detection, and the adduct ions of cetrorelix and I.S. with trifluoroacetic acid were monitored in extremely high mass region of m/z 1543 and 1700, respectively. The lower limit of quantitation was 1.00 ng per 1 ml of plasma and 2.09 ng per 2 ml of urine, and the present method was applied to the analysis of pharmacokinetics of cetrorelix in human during phase 1 clinical trial.  相似文献   

13.
A simple, sensitive and specific liquid chromatography–electrospray tandem mass spectrometry (LC–MS–MS) method for the determination of clindamycin (I) was developed. Both I and verapamil (II, internal standard) were analyzed using a C18 column with a mobile phase of 80% acetonitrile–0.01% trifluoroacetic acid. Column eluents were monitored by electrospray tandem mass spectrometry. Multiple reaction monitoring (MRM) using the parent to daughter combinations of m/z 425→126 and 455→165 was used to quantitate I. A limit of quantitation of 0.0500 μg/ml was found. The assay exhibited a linear dynamic range of 0.0500–20.0 μg/ml and gave a correlation coefficient (r2) of 0.998 or better. The chromatographic run time was approximately 2 min. The intra-batch precision and accuracy of the quality controls (QCs, 0.0500, 0.150, 1.50, 15.0 and 20.0 μg/ml) were characterized by coefficients of variation (CVs) of 5.13 to 13.7% and relative errors (REs) of −4.34 to 4.58%, respectively. The inter-batch precision and accuracy of the QCs were characterized by CVs of 4.35 to 8.32% and REs of −10.8 to −4.17%, respectively. The method has successfully been applied to the analysis of samples taken up to 12 h after oral administration of 300 mg of I in healthy volunteers.  相似文献   

14.
A method is described for the determination of celecoxib in human plasma. Samples were extracted using 3M Empore membrane extraction cartridges and separated under normal-phase HPLC conditions using a Nucleosil-NO2 (150×4.6 mm, 5 μm) column. Detection was accomplished using UV absorbance at 260 nm. The HPLC method included a column switching procedure, in which late eluting compounds were diverted to waste, to reduce run-time to 12 min. The assay was linear in the concentration range of 25–2000 ng/ml when 1-ml aliquots of plasma were extracted. Recoveries of celecoxib were greater than 91% over the calibration curve range. Intraday precision and accuracy for this assay were 5.7% C.V. or better and within 2.3% of nominal, respectively. The assay was used to analyze samples collected during human clinical studies.  相似文献   

15.
Rapid and simple achiral and chiral HPLC assays have been developed for the determination of verapamil and its metabolites in serum samples. Two achiral reversed-phase columns, Hisep C18 (150×4.6 mm) and NovaPak C18 (150×3.9 mm) were used for the simultaneous separation of all analyzed compounds. An α1-AGP column (100×4.0 mm) was recommended for successful chiral separations of verapamil and its seven metabolites. All analyses were realised with fluorescence detection at λex=276 nm and λem=310 nm. Limits of quantitation were in the range 1.0 to 5 ng/ml for all compounds. Both off-line SPE (SepPak C18 cartridges) and the on-line SPE with a semipermeable surface SDS C8 pre-column, (10×4.6 mm) were used for the clean-up and sample preconcentration. Extraction recoveries for all analyzed compounds were 87.7±5.8 to 92.7±4.0% for off-line SPE and 94.3±4.2 to 98.2±5.1% for on-line SPE. The complete assay could be applied for achiral and chiral monitoring verapamil and all its metabolites in serum samples.  相似文献   

16.
For the determination of cisapride from serum samples, an automated microbore high-performance liquid chromatographic method with column switching has been developed. After serum samples (100 μl) were directly injected onto a Capcell Pak MF Ph-1 pre-column (10×4 mm I.D.), the deproteinization and concentration were carried out by acetonitrile–phosphate buffer (20 mM, pH 7.0) (2:8, v/v) at valve position A. At 2.6 min, the valve was switched to position B and the concentrated analytes were transferred from MF Ph-1 pre-column to a C18 intermediate column (35×2 mm I.D.) using washing solvent. By valve switching to position A at 4.3 min, the analytes were separated on a Capcell Pak C18 UG 120 column (250×1.5 mm I.D.) with acetonitrile–phosphate buffer (20 mM, pH 7.0) (5:5, v/v) at a flow-rate of 0.1 ml/min. Total analysis time per sample was 18 min. The linearity of response was good (r=0.999) over the concentration range of 5–200 ng/ml. The within-day and day-to-day precision (CV) and inaccuracy were less than 3.7% and 3.8%, respectively. The mean recovery was 96.5±2.4% with the detection limit of 2 ng/ml.  相似文献   

17.
A simple and sensitive high-performance liquid chromatographic (HPLC) method with UV absorbance detection is described for the quantitation of risperidone and its major metabolite 9-hydroxyrisperidone in human plasma, using clozapine as internal standard. After sample alkalinization with 1 ml of NaOH (2 M) the test compounds were extracted from plasma using diisopropyl ether–isoamylalcohol (99:1, v/v). The organic phase was back-extracted with 150 μl potassium phosphate (0.1 M, pH 2.2) and 60 μl of the acid solution was injected into a C18 BDS Hypersil analytical column (3 μm, 100×4.6 mm I.D.). The mobile phase consisted of phosphate buffer (0.05 M, pH 3.7 with 25% H3PO4)–acetonitrile (70:30, v/v), and was delivered at a flow-rate of 1.0 ml/min. The peaks were detected using a UV detector set at 278 nm and the total time for a chromatographic separation was about 4 min. The method was validated for the concentration range 5–100 ng/ml. Mean recoveries were 98.0% for risperidone and 83.5% for 9-hydroxyrisperidone. Intra- and inter-day relative standard deviations were less than 11% for both compounds, while accuracy, expressed as percent error, ranged from 1.6 to 25%. The limit of quantitation was 2 ng/ml for both analytes. The method shows good specificity with respect to commonly prescribed psychotropic drugs, and it has successfully been applied for pharmacokinetic studies and therapeutic drug monitoring.  相似文献   

18.
A procedure based on gas chromatography–tandem mass spectrometry for identification and quantitation of lorazepam in plasma and urine is presented. The analyte was extracted from biological fluids under alkaline conditions using solid-phase extraction with an Extrelut-1 column in the presence of oxazepam-d5 as the internal standard. Both compounds were then converted to their trimethylsilyl derivatives and the reaction products were identified and quantitated by gas chromatography–tandem mass spectrometry using the product ions of the two compounds (m/z 341, 306 and 267 for lorazepam derivative and m/z 346, 309 and 271 for oxazepam-d5 derivative) formed from the parent ions by collision-induced dissociation in the ion trap spectrometer. Limit of quantitation was 0.1 ng/ml. This method was validated for urine and plasma samples of individuals in treatment with the drug.  相似文献   

19.
A high-performance liquid chromatographic method has been developed for the determination of penicillin-V concentrations between 0.1 and 19 μg/ml in human plasma. Penicillin-V was isolated from plasma by solid-phase extraction on a C18/OH cartridge. The extracts were injected onto a reversed-phase HPLC system. A 125×4 mm C18 column was used to separate penicillin-V from its main metabolites, 5R- and 5S-penicilloic acid and endogenous compounds. The eluent consisted of 66% 0.02 M phosphoric acid buffer, to which tetrabutylammonium dihydrogenphosphate and 34% acetonitrile were added. The column effluent was monitored by ultraviolet spectrophotometry at 269 nm. Using this method, penicillin-V concentrations in plasma could be determined with an accuracy between −5.4 and 5.2% and a precision between 0.8 and 1.6%. The method has proved to be reliable and was used in biovailability studies for the development of a new oral penicillin-V formulation.  相似文献   

20.
A sensitive and specific assay of human plasma for the determination of (5α,7β,16β)-16[(4-chlorophenyl)oxy]-4,7-dimethyl-4-aza-andronstan-3-one (I), a selective inhibitor of human type 1 5α-reductase, has been developed. The method is based on high-performance liquid chromatography (HPLC) with tandem mass spectrometric (MS–MS) detection. The analyte (I) and internal standard, Proscar (II), were isolated from the basified biological matrix using a liquid–liquid extraction with methyl-tert.-butyl ether (MTBE). The organic extract was evaporated to dryness, the residue was reconstituted in mobile phase and injected into the HPLC system. The MS–MS detection was performed on a PE Sciex API III Plus tandem mass spectrometer using a heated nebulizer interface. Multiple reaction monitoring using the precursor→product ion combinations of m/z 430→114 and 373→305 was used to quantify I and internal standard (II), respectively. The assay was validated in the concentration range of 0.5 to 500 ng/ml in human plasma. The precision of the assay, expressed as coefficient of variation (C.V.), was less than 7% over the entire concentration range, with adequate assay specificity and accuracy. The HPLC–MS–MS method provided sufficient sensitivity to completely map the 24 h pharmacokinetic time-course following a single 0.5 mg dose of I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号