首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human replication protein A (huRPA) is a multisubunit protein which is involved in DNA replication, repair and recombination processes. It exists as a stable heterotrimer consisting of p70, p32 and p14 subunits. To understand the contribution of huRPA subunits to DNA binding we applied the photoaffinity labeling technique. The photoreactive oligonucleotide was synthesized in situ by DNA polymerases. 5-[N-(2-nitro-5-azidobenzoyl)-trans -3-aminopropenyl-1]deoxyuridine-5'-triphosphate (NABdUTP) was used as substrate for elongation of a radiolabeled primer logical ortemplate either by human DNA polymerase alpha primase (polalpha), human DNA polymerase beta (polbeta) or Klenow fragment of Escherichia coli DNA polymerase I (KF). The polymerase was incubated with NABdUTP and radiolabeled primer-template in the presence or absence of huRPA. The reaction mixtures were then irradiated with monochromatic UV light (315 nm) and the crosslinked products were separated by SDS-PAGE. The results clearly demonstrate crosslinking of the huRPA p70 and p32 subunits with DNA. The p70 subunit appears to bind to the single-stranded part of the DNA duplex, the p32 subunit locates near the 3'-end of the primer, while the p14 subunit locates relatively far from the 3'-end of the primer. This approach opens new possibilities for analysis of huRPA loading on DNA in the course of DNA replication and DNA repair.  相似文献   

2.
The heterotrimeric replication protein A (RPA) has multiple essential activities in eukaryotic DNA metabolism and in signaling pathways. Despite extensive analyses, the functions of the smallest RPA subunit p14 are still unknown. To solve this issue we produced and characterized a dimeric RPA complex lacking p14, RPADeltap14, consisting of p70 and p32. RPADeltap14 was able to bind single-stranded DNA, but its binding mode and affinity differed from those of the heterotrimeric complex. Moreover, in the RPADeltap14 complex p32 only minimally recognized the 3'-end of a primer in a primer-template junction. Partial proteolytic digests revealed that p14 and p32 together stabilize the C terminus of p70 against degradation. Although RPADeltap14 efficiently supported bidirectional unwinding of double-stranded DNA and interacted with both the simian virus 40 (SV40) large T antigen and cellular DNA polymerase alpha-primase, it did not support cell-free SV40 DNA replication. This inability manifested itself in a failure to support both the primer synthesis and primer elongation reactions. These data reveal that efficient binding and correct positioning of the RPA complex on single-stranded DNA requires all three subunits to support DNA replication.  相似文献   

3.
Although the mechanical aspects of the single-stranded DNA (ssDNA) binding activity of human replication protein A (RPA) have been extensively studied, only limited information is available about its interaction with other physiologically relevant DNA structures. RPA interacts with partial DNA duplexes that resemble DNA intermediates found in the processes of DNA replication and DNA repair. Limited proteolysis of RPA showed that RPA associated with ssDNA is less protected against proteases than RPA bound to a partial duplex DNA containing a 5'-protruding tail that had the same length as the ssDNA. Modification of both the 70- and 32-kDa subunits, RPA70 and RPA32, respectively, by photoaffinity labeling indicates that RPA can bind the primer-template junction of partial duplex DNAs by interacting with the 3'-end of the primer. The identification of the protein domains modified by the photoreactive 3'-end of the primer showed that domains located in the central part of the RPA32 subunit (amino acids 39-180) and the C-terminal part of the RPA70 subunit (amino acids 432-616) are involved in these interactions.  相似文献   

4.
Polarity of human replication protein A binding to DNA   总被引:6,自引:4,他引:2       下载免费PDF全文
Replication protein A (RPA), the nuclear single-stranded DNA binding protein is involved in DNA replication, nucleotide excision repair (NER) and homologous recombination. It is a stable heterotrimer consisting of subunits with molecular masses of 70, 32 and 14 kDa (p70, p32 and p14, respectively). Gapped DNA structures are common intermediates during DNA replication and NER. To analyze the interaction of RPA and its subunits with gapped DNA we designed structures containing 9 and 30 nucleotide gaps with a photoreactive arylazido group at the 3′-end of the upstream oligonucleotide or at the 5′-end of the downstream oligonucleotide. UV crosslinking and subsequent analysis showed that the p70 subunit mainly interacts with the 5′-end of DNA irrespective of DNA structure, while the subunit orientation towards the 3′-end of DNA in the gap structures strongly depends on the gap size. The results are compared with the data obtained previously with the primer–template systems containing 5′- or 3′-protruding DNA strands. Our results suggest a model of polar RPA binding to the gapped DNA.  相似文献   

5.
Replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein (70, 32, and 14 kDa) that is an essential component of the DNA replication fork. A complementary DNA encoding zebrafish RPA 32-kDa subunit was isolated by screening a zebrafish embryo lambda APII cDNA library with a human RPA p32 cDNA probe. The zebrafish RPA p32 cDNA consisted of 1097 bp encoding 272 amino acid residues. The deduced amino acid sequence shows high similarity to mouse and human RPA p32. In vitro phosphorylation of zebrafish RPA protein by Cdc2 kinase was shown. A recombinant protein of zebrafish RPA p32 containing a short histidine tag at the NH(2)-terminus was overexpressed in Escherichia coli BL21(DE3) pLys using an inducible T7 expression system, and was purified by Ni-NTA affinity chromatography. In this article, cloning of the zebrafish RPA p32 cDNA is reported in relation to the study of DNA replication in fish.  相似文献   

6.
FABdCTP was found to be a substrate of DNA polymerization catalyzed by a DNA polymerase alpha-DNA primase complex on the 5'-GTGAGTAAGTGGAGTTTGGCACGAT-3' template and 3'-CTCAAACCGT-5' primer. After complete primer extension in the presence of FABdCTP under UV-irradiation of the reaction mixture, 70% of the template was covalently linked to the primer. Labeling of the 165 kDa subunit of the DNA polymerase alpha, 59 kDa and 49 kDa subunits of the DNA primase and an unknown protein with apparent molecular weight of 31 kDa was observed. By another way of protein labeling FABdCTP was covalently bound to the subunits of the enzyme under UV irradiation and then this moiety was introduced into the 3'-end of the 5'-[32P]primer by the catalytic activity of DNA polymerase or DNA primase. In this case covalent labeling of the 165 kDa, 49 kDa and 31 kDa subunits was observed.  相似文献   

7.
The essential Saccharomyces cerevisiae regulatory protein Rap1 contains two tandem Myb-like DNA binding sub-domains that interact with two defined DNA "hemisites", separated by a trinucleotide linker sequence. We have mapped the thermodynamically defined DNA-binding site of Rap1 by a primer extension method coupled with electrophoretic separation of bound and unbound DNAs. Relative to published consensus sequences, we detect binding interactions that extend 3 bp beyond the 5'-end of the putative DNA-binding site. This new site of interaction is located where the DNA minor groove faces the protein, and may account for the major DNA bending induced by Rap1p that previous studies have mapped to a site immediately upstream of the consensus binding site. In addition, we show that a minimal DNA-binding site made of one single consensus hemisite, preceded or followed by a spacer trinucleotide that interacts with the unstructured protein linker between the two Rap1p DNA binding domains, is able to bind the protein, although at lower affinity. These findings may explain the observed in vivo binding properties of Rap1p at many promoters that lack canonical binding sites.  相似文献   

8.
Eukaryotic DNA polymerase delta and its accessory proteins are essential for SV40 DNA replication in vitro. A multi-subunit protein complex, replication factor C (RF-C), which is composed of subunits with apparent molecular weights of 140,000, 41,000, and 37,000, has primer/template binding and DNA-dependent ATPase activities. UV-cross-linking experiments demonstrated that the Mr = 140,000 subunit recognizes and binds to the primer-template DNA, whereas the Mr = 41,000 polypeptide binds ATP. Assembly of a replication complex at a primer-template junction has been studied in detail with synthetic, hairpin DNAs. Following glutaraldehyde fixation, a gel shift assay demonstrated that RF-C alone forms a weak binding complex with the hairpin DNA. Addition of ATP or its nonhydrolyzable analogue, ATP gamma S, increased specific binding to the DNA. Footprinting experiments revealed that RF-C recognizes the primer-template junction, covering 15 bases of the primer DNA from the 3'-end and 20 bases of the template DNA. Another replication factor, proliferating cell nuclear antigen (PCNA) binds to RF-C and the primer-template DNA forming a primer recognition complex and extends the protected region on the duplex DNA. This RF-C.PCNA complex has significant single-stranded DNA binding activity in addition to binding to a primer-template junction. However, addition of another replication factor, RF-A, completely blocked the nonspecific, single-stranded DNA binding by the RF-C.PCNA complex. RF-A therefore functions as a specificity factor for primer recognition. In the absence of RF-C, DNA polymerase delta (pol delta) and PCNA form a complex at the primer-template junction, protecting exactly the same site as the primer recognition complex. Addition of RF-C to this complex produced a higher order complex which is unstable unless its formation is coupled with translocation of pol delta. These results suggest that the sequential binding of RF-C, PCNA, and pol delta to a primer-template junction might directly account for the initiation of leading strand DNA synthesis at a replication origin. We demonstrate this directly in an accompanying paper (Tsurimoto, T., and Stillman, B. (1991) J. Biol. Chem. 266, 1961-1968).  相似文献   

9.
Replication protein A (RP-A) is a heterotrimeric single-stranded DNA binding protein with important functions in DNA replication, DNA repair and DNA recombination. We have found that RP-A from calf thymus can unwind DNA in the absence of ATP and MgCl2, two essential cofactors for bona fide DNA helicases (Georgaki, A., Strack, B., Podust, V. and Hübscher, U. FEBS Lett. 308, 240-244, 1992). DNA unwinding by RP-A was found to be sensitive to MgCl2, ATP, heating and freezing/thawing. Escherichia coli single stranded DNA binding protein at concentrations that coat the single stranded regions had no influence on DNA unwinding by RP-A suggesting that RP-A binds fast and tightly to single-stranded DNA. DNA unwinding by RP-A did not show directionality. Experiments with monoclonal antibodies strongly suggested that the 70kDa subunit is responsible for DNA unwinding. Phosphorylation of the 32kDa subunit of RP-A by chicken cdc2 kinase facilitated DNA unwinding indicating that this posttranslational modification might be important for modulating this activity of RP-A. Finally, DNA unwinding of a primer recognition complex for DNA polymerase delta which is composed of proliferating cell nuclear antigen, replication factor C and ATP bound to a singly-primed M13DNA slightly inhibited DNA unwinding. An important role for DNA unwinding by RP-A in processes such as initiation of DNA replication, fork propagation, DNA repair and DNA recombination is discussed.  相似文献   

10.
Replication protein A (RPA) is a stable heterotrimeric complex consisting of p70, p32 and p14 subunits. The protein plays a crucial role in SV40 minichromosome replication. Peptides of p70 representing interaction sites for the smaller two subunits, DNA as well as the viral initiator protein large T-antigen (Tag) and the cellular DNA polymerase alpha-primase (Pol) all interfered with the replication process indicating the importance of the different p70 activities in this process. Inhibition by the peptide disrupting protein-protein interactions was observed only during the pre-initiation stage prior to primer synthesis, suggesting the formation of a stable initiation complex between RPA, Tag and Pol at the primer end.  相似文献   

11.
Eukaryotic replication protein A (RPA) is a single-stranded(ss) DNA binding protein with multiple functions in DNA replication, repair, and genetic recombination. The 70-kDa subunit of eukaryotic RPA contains a conserved four cysteine-type zinc-finger motif that has been implicated in the regulation of DNA replication and repair. Recently, we described a novel function for the zinc-finger motif in the regulation of human RPA's ssDNA binding activity through reduction-oxidation (redox). Here, we show that yeast RPA's ssDNA binding activity is regulated by redox potential through its RPA32 and/or RPA14 subunits. Yeast RPA requires a reducing agent, such as dithiothreitol (DTT), for its ssDNA binding activity. Also, under non-reducing conditions, its DNA binding activity decreases 20 fold. In contrast, the RPA70 subunit does not require DTT for its DNA binding activity and is not affected by the redox condition. These results suggest that all three subunits are required for the regulation of RPA's DNA binding activity through redox potential.  相似文献   

12.
Kim A  Park JS 《Molecules and cells》2002,13(3):493-497
The eukaryotic replication protein A (RPA) is a heterotrimeric protein complex. It consists of 70, 32, and 14 kDa subunits that are involved in DNA replication, repair, and genetic recombination. RPA is a 4-cysteine type zinc-finger protein. RPA's zinc-finger domain is not essential for DNA binding activity, but it is involved in the regulation of RPA's DNA binding activity through reduction-oxidation (redox). In this study, we show that yeast RPA's ssDNA binding activity is regulated by redox potential through its subcomplexes of 32 and 14 kDa subunits. In contrast, the subunits' complex, RPA70, formed a stable complex with ssDNA, even under non-reducing conditions. The addition of DTT and H202 had no effect on its DNA binding activity. In RPA70, since the addition of the subcomplexes of the 32 and 14 kDa subunits, it restored the modulating ssDNA binding activity to native RPA's DNA binding activity. These results suggest that the subcomplexes of the 32 and 14 kDa subunits may be involved in the modulating RPA's DNA binding activity through redox change. These studies, therefore, show the novel structure and function relationship of a multiprotein complex in that the role of a specific domain (or one subunit) is regulated by the other subunits.  相似文献   

13.
The p21 protein, a cyclin-dependent kinase (CDK) inhibitor, is capable of binding to both cyclin-CDK and the proliferating cell nuclear antigen (PCNA). Through its binding to PCNA, p21 can regulate the function of PCNA differentially in replication and repair. To gain an understanding of the precise mechanism by which p21 affects PCNA function, we have designed a new assay for replication factor C (RFC)-catalyzed loading of PCNA onto DNA, a method that utilizes a primer-template DNA attached to agarose beads via biotin-streptavidin. Using this assay, we showed that RFC remains transiently associated with PCNA on the DNA after the loading reaction. Addition of p21 did not inhibit RFC-dependent PCNA loading; rather, p21 formed a stable complex with PCNA on the DNA. In contrast, the formation of a p21-PCNA complex on the DNA resulted in the displacement of RFC from the DNA. The nonhydrolyzable analogs of ATP, adenosine-5′-O-(3-thiotriphosphate) (ATPγS) and adenyl-imidodiphosphate, each stabilized the primer recognition complex containing RFC and PCNA in the absence of p21. RFC in the ATPγS-activated complex was no longer displaced from the DNA by p21. We propose that p21 stimulates the dissociation of the RFC from the PCNA-DNA complex in a process that requires ATP hydrolysis and then inhibits subsequent PCNA-dependent events in DNA replication. The data suggest that the conformation of RFC in the primer recognition complex might change on hydrolysis of ATP. We also suggest that the p21-PCNA complex that remains attached to DNA might function to tether cyclin-CDK complexes to specific regions of the genome.  相似文献   

14.
Mouse cell extracts support vigorous replication of polyomavirus (Py) DNA in vitro, while human cell extracts do not. However, the addition of purified mouse DNA polymerase alpha-primase to human cell extracts renders them permissive for Py DNA replication, suggesting that mouse polymerase alpha-primase determines the species specificity of Py DNA replication. We set out to identify the subunit of mouse polymerase alpha-primase that mediates this species specificity. To this end, we cloned and expressed cDNAs encoding all four subunits of mouse and human polymerase alpha-primase. Purified recombinant mouse polymerase alpha-primase and a hybrid DNA polymerase alpha-primase complex composed of human subunits p180 and p68 and mouse subunits p58 and p48 supported Py DNA replication in human cell extracts depleted of polymerase alpha-primase, suggesting that the primase heterodimer or one of its subunits controls host specificity. To determine whether both mouse primase subunits were required, recombinant hybrid polymerase alpha-primases containing only one mouse primase subunit, p48 or p58, together with three human subunits, were assayed for Py replication activity. Only the hybrid containing mouse p48 efficiently replicated Py DNA in depleted human cell extracts. Moreover, in a purified initiation assay containing Py T antigen, replication protein A (RP-A) and topoisomerase I, only the hybrid polymerase alpha-primase containing the mouse p48 subunit initiated primer synthesis on Py origin DNA. Together, these results indicate that the p48 subunit is primarily responsible for the species specificity of Py DNA replication in vitro. Specific physical association of Py T antigen with purified recombinant DNA polymerase alpha-primase, mouse DNA primase heterodimer, and mouse p48 suggested that direct interactions between Py T antigen and primase could play a role in species-specific initiation of Py replication.  相似文献   

15.
16.
Mo J  Liu L  Leon A  Mazloum N  Lee MY 《Biochemistry》2000,39(24):7245-7254
DNA polymerase delta, the key enzyme for eukaryotic chromosomal replication, has been well characterized as consisting of a core enzyme of a 125 kDa catalytic subunit and a smaller 50 kDa subunit. However, less is known about the other proteins that may comprise additional subunits or participate in the macromolecular protein complex that is involved in chromosomal DNA replication. In this study, the properties of calf thymus pol delta preparations isolated by immunoaffinity chromatography were investigated. It is demonstrated for the first time using highly purified preparations that the pol delta heterodimer is associated with other polypeptides in high-molecular weight species that range from 260000 to >500000 in size, as determined by FPLC gel filtration. These preparations are associated with polypeptides of ca. 68-70, 34, 32, and 25 kDa. Similar findings were revealed with glycerol gradient ultracentrifugation. The p68 polypeptide was shown to be a PCNA binding protein by overlay methods with biotinylated PCNA. Protein sequencing of the p68, p34, and p25 polypeptide bands revealed sequences that correspond to the hypothetical protein KIAA0039. KIAA0039 displays a small but significant degree of homology to Schizosaccharomyces pombe Cdc27, which, like Saccharomyces cerevisiae Pol32p, has been described as the third subunit of yeast pol delta. These studies provide evidence that p68 is a subunit of pol delta. In addition, the p68-70 and p32 polypeptides were found to be derived from the 70 and 32 kDa subunits of RPA, respectively.  相似文献   

17.
The single-stranded DNA binding protein RP-A is required in SV40 DNAin vitro replication. The RP-A purified from calf thymus contains 4 polypeptides with molecular weights 70kDa, 53kDa, 32kDa, and 14kDa. The p70 subunit and its proteolysed form p53 are recognized by the monoclonal antibody 70C (Kenny et al. (1990)) and bind to ssDNA. The p70 and p32 subunits of bovine RP-A are phosphorylated by CDC2-cyclin B kinase. Bovine RP-A supports the origin dependent unwinding of SV40 DNA by T antigen. Furthermore, bovine RP-A can efficiently substitute for human RP-A in SV40 DNA replicationin vitro. A modified blotting technique revealed that RP-A interacts specifically and directly with the p48 subunit of DNA polymerase α-primase complex.  相似文献   

18.
DNA polymerases cannot synthesize DNA without a primer, and DNA primase is the only specialized enzyme capable of de novo synthesis of short RNA primers. In eukaryotes, primase functions within a heterotetrameric complex in concert with a tightly bound DNA polymerase α (Pol α). In humans, the Pol α part is comprised of a catalytic subunit (p180) and an accessory subunit B (p70), and the primase part consists of a small catalytic subunit (p49) and a large essential subunit (p58). The latter subunit participates in primer synthesis, counts the number of nucleotides in a primer, assists the release of the primer-template from primase and transfers it to the Pol α active site. Recently reported crystal structures of the C-terminal domains of the yeast and human enzymes’ large subunits provided critical information related to their structure, possible sites for binding of nucleotides and template DNA, as well as the overall organization of eukaryotic primases. However, the structures also revealed a difference in the folding of their proposed DNA-binding fragments, raising the possibility that yeast and human proteins are functionally different. Here we report new structure of the C-terminal domain of the human primase p58 subunit. This structure exhibits a fold similar to a fold reported for the yeast protein but different than a fold reported for the human protein. Based on a comparative analysis of all three C-terminal domain structures, we propose a mechanism of RNA primer length counting and dissociation of the primer-template from primase by a switch in conformation of the ssDNA-binding region of p58.  相似文献   

19.
In T4 phage, coordinated leading and lagging strand DNA synthesis is carried out by an eight-protein complex termed the replisome. The control of lagging strand DNA synthesis depends on a highly dynamic replisome with several proteins entering and leaving during DNA replication. Here we examine the role of single-stranded binding protein (gp32) in the repetitive cycles of lagging strand synthesis. Removal of the protein-interacting domain of gp32 results in a reduction in the number of primers synthesized and in the efficiency of primer transfer to the polymerase. We find that the primase protein is moderately processive, and this processivity depends on the presence of full-length gp32 at the replication fork. Surprisingly, we find that an increase in the efficiency of primer transfer to the clamp protein correlates with a decrease in the dissociation rate of the primase from the replisome. These findings result in a revised model of lagging strand DNA synthesis where the primase remains as part of the replisome after each successful cycle of Okazaki fragment synthesis. A delay in primer transfer results in an increased probability of the primase dissociating from the replication fork. The interplay between gp32, primase, clamp, and clamp loader dictates the rate and efficiency of primer synthesis, polymerase recycling, and primer transfer to the polymerase.  相似文献   

20.
DNA polymerase alpha-primase (pol-prim) is a heterotetramer with DNA polymerase and primase activities. The polymerase (p180) and primase (p48 and p58) subunits synthesize primers and extend them, but the function of the remaining subunit (p68) is poorly understood. Genetic studies in yeast suggested an essential role for the p68 ortholog in early S phase prior to the hydroxyurea-sensitive step, possibly a regulatory role in initiation of DNA replication, but found no evidence for an essential function of p68 later in S phase. To investigate whether the human p68 subunit has an essential role in DNA replication, we examined the ability of a purified trimeric human pol-prim lacking p68 to initiate simian virus 40 DNA replication in vitro and to synthesize and elongate primers on single-stranded DNA in the presence of T antigen and replication protein A (RPA). Both activities of trimeric pol-prim were defective, but activity was recovered upon addition of separately purified p68. Phosphorylation of p68 by cyclin A-dependent protein kinase also inhibited both activities of pol-prim. The data strongly suggest that the p68 subunit is required for priming activity of pol-prim in the presence of RPA and T antigen, both during initiation at the origin and during lagging strand replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号