首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transforming growth factor-beta (TGF-beta) is a potential mediator of placental trophoblast functions, including differentiation, hormone production, endometrial invasion, and immunosuppression. Equilibrium binding and affinity-labeling assays were used to investigate the binding characteristics of TGF-beta 1 and TGF-beta 2 on an established human choriocarcinoma trophoblastic cell line (BeWo). The equilibrium binding experiments indicated that the BeWo cells exhibited similar average affinities and total number of binding sites for TGF-beta 1 and TGF-beta 2. The Kd values obtained from Scatchard analyses were approximately 65 pM for 125I-TGF-beta 1 and approximately 40 pM for 125I-TGF-beta 2, with 70,000 and 85,000 sites per cell, respectively. Competitive equilibrium binding experiments indicated that TGF-beta 1 and TGF-beta 2 were equipotent (apparent half maximal inhibition [IC50] approximately 70 pM) and that all binding sites were capable of recognizing both isoforms. Affinity-labeling studies with 125I-TGF-beta 1 and 125I-TGF-beta 2 and the chemical cross-linking agent bis(sulfosuccinimidyl)suberate (BS3) revealed a predominant type III/betaglycan receptor, a low level of apparently heterogeneous type I and II receptors and an additional novel 38-kDa TGF-beta binding glycoprotein that was present both under reducing and nonreducing conditions on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Affinity-labeling saturation and competition studies indicated that the type III/betaglycan component appears to have a 7-fold higher capacity for TGF-beta 1 than for -beta 2 yet exhibits a 5- to 10-fold higher affinity for TGF-beta 2 than for -beta 1. The 38-kDa TGF-beta binding component, an N-linked glycoprotein, exhibits a higher affinity for TGF-beta 2 than for -beta 1 that is strikingly similar to that of the type III/betaglycan receptor. This 38-kDa binding protein appears to be upregulated after methotrexate-induced differentiation of the BeWo cells.  相似文献   

2.
Affinity-labeling techniques have been used to identify three types of high-affinity receptors for transforming growth factor beta (TGF-beta) on the surface of many cells in culture. Here we demonstrate that membrane preparations from tissue sources may also be used as an alternative system for studying the binding properties of TGF-beta receptors. Using a chemical cross-linking technique with 125I-TGF-beta 1 and 125I-TGF-beta 2 and bis(sulfosuccinimidyl)suberate (BS3), we have identified and characterized two high-affinity binding components in membrane preparations derived from human term placenta. The larger species, which migrates as a diffuse band of molecular mass 250-350 kDa on sodium dodecyl sulfate-polyacrylamide electrophoresis gels, is characteristic of the TGF-beta receptor type III, a proteoglycan containing glycosaminoglycan (GAG) chains of chondroitin and heparan sulfate. The smaller species of molecular mass 140 kDa was identified as the core glycoprotein of this type III receptor by using the techniques of enzymatic deglycosylation and peptide mapping. Competition experiments, using 125I-TGF-beta 1 or 125I-TGF-beta 2 and varying amounts of competing unlabeled TGF-beta 1 or TGF-beta 2, revealed that both the placental type III proteoglycan and its core glycoprotein belong to a novel class of type III receptors that exhibit a greater affinity for TGF-beta 2 than for TGF-beta 1. This preferential binding of TGF-beta 2 to placental type III receptors suggests differential roles for TGF-beta 2 and TGF-beta 1 in placental function.  相似文献   

3.
Transforming growth factor-beta is likely to be an important factor controlling placental activities, including growth, differentiation, invasiveness, hormone production, and immunosuppression. We have used a chemical cross-linking technique with either 125I-TGF-beta 1 or 125I-TGF-beta 2 and bis(sulfosuccinimidyl) suberate (BS3) to characterize TGF-beta binding components on human placental cells in primary culture. Trophoblast-enriched primary cultures exhibited a predominant affinity-labelled complex characteristic of membrane-anchored betaglycan (formerly termed the Type III TGF-beta receptor) and relatively low levels of the Type I and Type II TGF-beta receptor complexes. The results from affinity labelling saturation and competition experiments with TGF-beta 1 and TGF-beta 2 suggest the existence of two distinct subtypes of betaglycan: one subtype has a lower capacity and higher affinity, binds both TGF-beta 1 and TGF-beta 2, yet has a preferential affinity for TGF-beta 2; the second subtype has a higher capacity and lower affinity and binds TGF-beta 1 exclusively. In contrast, mesenchymal cell-enriched placental primary cultures possessed only one subtype of the betaglycan component that binds the two TGF-beta isoforms with similar affinities and capacities as observed on most cell lines. These experiments demonstrate that the betaglycan component which exhibits a higher affinity for TGF-beta 2 than for TGF-beta 1, that we had observed previously on term placental membranes, is actually present on trophoblast cells. In addition to the two distinctive betaglycan subtypes, subtypes of the Type I and II TGF-beta receptors were detected on the trophoblast-enriched cultures. In competition experiments, when 125I-TGF-beta 1 was used as the radiotracer, the Type I and II TGF-beta receptors show a much higher affinity for TGF-beta 1 than for TGF-beta 2, as observed with other cell types. However, when 125I-TGF-beta 2 was used, low abundance subtypes of both the Type I and II receptors that show similar affinities for TGF-beta 1 and TGF-beta 2 were also revealed.  相似文献   

4.
A low molecular weight inhibitor of TGF-beta 1 binding was detected in partially purified human platelet extracts by using Hep 3B hepatoma cells in the binding assays. The inhibitory protein was purified to homogeneity and was identified as platelet factor 4 on the basis of its amino acid sequence. TGF-beta 1 binding to Hep 3B cells was almost completely inhibited by 100 nM concentrations of platelet factor 4, but TGF-beta 1 binding to NRK 49F fibroblasts was inhibited only slightly. Affinity cross-linking experiments revealed that these differences in the inhibition of TGF-beta 1 binding by platelet factor 4 were due to differences in the complements of TGF-beta 1 binding proteins present on these two cell types. In Hep 3B cells the majority of bound TGF-beta 1 was cross-linked to a complex which had an apparent molecular weight of 70 kDa. TGF-beta 1 binding to this protein was the most sensitive to inhibition by platelet factor 4. Based on its size and TGF-beta 1 binding properties, we believe this protein is the type I TGF-beta 1 receptor. Hep 3B cells also had a high-affinity TGF-beta 1 binding protein which appeared as an 80 kDa complex, and which we believe to be the type II TGF-beta 1 receptor. TGF-beta 1 binding to this protein was not inhibited by platelet factor 4. TGF-beta 1 was also cross-linked to complexes of higher molecular weights in Hep 3B cells, but it was not clear whether any of them represented the type III TGF-beta 1 receptor. In NRK 49F cells, the majority of bound TGF-beta 1 was cross-linked to a high molecular weight complex which probably represented the type III TGF-beta 1 receptor. NRK 49F cells also had type I TGF-beta 1 receptors and platelet factor 4 inhibited binding to these receptors in the NRK cells. Since the type I receptor contributed only a small percentage of total TGF-beta 1 binding, however, the overall effects of platelet factor 4 on TGF-beta 1 binding to NRK 49F cells were negligible. We were unable to demonstrate specific or saturable binding of platelet factor 4 to Hep 3B cells using either direct binding or affinity cross-linking assays. Thus, it is not clear whether platelet factor 4 inhibits TGF-beta 1 binding by competition for binding to the type I receptor. Modest concentrations of TGF-beta 1 reduced the adherence of Hep 3B cells to tissue culture dishes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
We identified transforming growth factor-beta (TGF-beta)-binding proteins which are distinct from previously described TGF-beta receptors or TGF-beta-binding proteins. These TGF-beta-binding proteins migrate as 150- and 180-kDa 125I-TGF-beta 1 affinity-labeled complexes which are consistently co-expressed in A549, Mv1Lu, MG-63, and BS-C-1 cells. They differ from the types I, II, and III TGF-beta receptors in their electrophoretic mobilities, their lack of binding to TGF-beta 2, and their failure to undergo the marked down-regulation seen with types I, II, and III receptors following a 16-h incubation with TGF-beta 1. The 150- and 180-kDa TGF-beta-binding proteins also are distinct from the recently described disulfide-linked TGF-beta 1-binding proteins which are present in rat glomeruli. In contrast to the glomerular TGF-beta 1-binding proteins, the electrophoretic mobilities of the 150- and 180-kDa binding proteins are unchanged following reduction. In addition, the 150- and 180-kDa TGF-beta-binding proteins are present in the detergent-rich phase during Triton X-114 phase separation, whereas the glomerular TGF-beta-binding proteins partition exclusively into the detergent-poor phase.  相似文献   

6.
7.
Type beta transforming growth factors (TGF) are disulfide-linked homo- and heterodimers of two related polypeptide chains, beta 1 and beta 2. The homodimers TGF-beta 1 and TGF-beta 2 are widely distributed, but the heterodimer TGF-beta 1.2 has been found only in porcine platelets (Cheifetz, S., Weatherbee, J.A., Tsang, M.L.-S., Anderson, J.K., Mole, J.E., Lucas, R., and Massagué, J. (1987) Cell 48, 409-415). Here we characterize the receptor binding and biological properties of TGF-beta 1.2 and compare them with those of TGF-beta 1 and TGF-beta 2. Three types of cell surface receptors previously identified by affinity labeling with 125I-TGF-beta 1 are available for binding to TGF-beta 1.2. These three types of receptors are detected as 65-kDa (type I), 85-95-kDa (type II), and 250-350-kDa (type III) affinity-labeled receptor complexes on electrophoresis gels. They co-exist in many cell types, have high affinity for TGF-beta 1, and varying degrees of affinity for TGF-beta 2. Of the 11 cell lines screened in the present study none showed evidence for additional receptor types that would bind TGF-beta 2 but not TGF-beta 1. In receptor competition studies, TGF-beta 1, TGF-beta 1.2, and TGF-beta 2 competed for binding to type I and type II receptors with a relative order of potencies of 16:5:1 and 12:3:1, respectively, whereas all three forms of TGF-beta were equipotent as ligands for the type III receptors. The three forms of TGF-beta were equally potent at stimulating the biosynthesis of extracellular sulfated proteoglycan in BRL-3A rat liver epithelial cells, a response that presumably involves the type III receptor present in these cells. In contrast, the ability of the three ligands to inhibit the growth of B6SUt-A multipotential hematopoietic progenitor cells which display only type I receptors decreased in the order TGF-beta 1, TGF-beta 1.2, and TGF-beta 2 with a relative potency of 100:30:1. The results indicate that the presence of one beta 1 chain in TGF-beta 1.2 increases (with respect to TGF-beta 2) the biological potency and binding affinity toward receptor types I and II, but the presence of a second beta 1 chain in the dimer is required for full potency.  相似文献   

8.
We have examined the ability of various forms of activin and inhibin, which are structurally related to transforming growth factor-beta (TGF-beta), to interact with various types of cell surface TGF-beta binding sites. Activin AB, inhibin A, and inhibin B were unable to compete with 125I-TGF-beta 1 for binding to the TGF-beta receptor types I, II, or III that coexist in human skin fibroblasts, rat liver epithelial cells, and mink lung epithelial cells. In contrast, activins and inhibins effectively competed for TGF-beta 1 binding to GH3 rat pituitary tumor cells. Binding of TGF-beta 1 to GH3 cells was mediated by about 2700 sites/cell with a Kd = 90 pM. Affinity labeling of these GH3 binding sites by cross-linking to 125I-TGF-beta 1 yielded 70-74-kDa labeled complexes distinct from previously identified TGF-beta binding components. Labeling of these 70-74-kDa components with 125I-TGF-beta 1 was inhibited by TGF-beta 1, TGF-beta 2, activin AB, and inhibin B at concentrations in the high picomolar to low nanomolar range, but it was not significantly affected by other polypeptide hormones and growth factors tested. The 70-74-kDa labeled GH3 components represent a novel type of cell surface TGF-beta binding protein that is unique in its ability to recognize various other members of the TGF-beta family of bioactive polypeptides.  相似文献   

9.
10.
The transforming growth factor-beta (TGF-beta) receptor type III is a low abundance cell surface component that binds TGF-beta 1 and TGF-beta 2 with high affinity and specificity, and is present in many mammalian and avian cell types. Type III TGF-beta receptors affinity-labeled with 125I-TGF-beta migrate in sodium dodecyl sulfate-polyacrylamide electrophoresis gels as diffuse species of 250-350 kDa. Here we show that type III receptors deglycosylated by the action of trifluoromethanesulfonic acid yield affinity-labeled receptor cores of 110-130 kDa. This marked decrease in molecular weight is also achieved by combined treatment of type III receptors with heparitinase and chondroitinase ABC. Digestion of receptor-linked glycosaminoglycans by treatment of intact cell monolayers with heparitinase and chondroitinase does not prevent TGF-beta binding to the type III receptor core polypeptide and does not release the receptor polypeptide from the membrane. The type III TGF-beta receptor binds tightly to DEAE-Sephacel and coelutes with cellular proteoglycans at a characteristically high salt concentration. Thus, the type III TGF-beta receptor has the properties of a membrane proteoglycan that carries heparan and chondroitin sulfate glycosaminoglycan chains. The binding site for TGF-beta appears to reside in the 100-120-kDa core polypeptide of this receptor. The type III receptor is highly sensitive to cleavage by trypsin. Trypsin action releases the glycosaminoglycan-containing domain of the receptor leaving a 60-kDa membrane-associated domain that contains the cross-linked ligand. A model for the domain structure of the TGF-beta receptor type III is proposed based on these results.  相似文献   

11.
The transforming growth factor beta (TGF-beta) type V receptor, a newly identified high molecular weight TGF-beta receptor (M(r) approximately 400,000) has been purified from bovine liver plasma membranes (O'Grady, P., Kuo, M.-D., Baldassare, J. J., Huang, S. S., and Huang, J. S. (1991) J. Biol. Chem. 266, 8583-8589). The purified TGF-beta type V receptor underwent autophosphorylation at serine residues when incubated with [gamma-32P]ATP in the presence of 0.1% beta-mercaptoethanol and 2.5 mM MnCl2. This phosphorylation was stimulated by preincubation with TGF-beta. The preferred exogenous substrate for the Ser/Thr-specific phosphorylation activity of the type V receptor was found to be bovine casein. The TGF-beta type V receptor could be affinity-labeled with 5'-p-[adenine-8-14C]fluorosulfonylbenzoyl adenosine. Polylysine appeared to stimulate the autophosphorylation of the TGF-beta type receptor in the presence of [gamma-32P]ATP and the incorporation of 5'-p-[adenine-8-14C]fluorosulfonylbenzoyl adenosine into the TGF-beta type V receptor. The amino acid sequence analysis of the peptide fragments produced by cyanogen bromide cleavage of the purified TGF-beta type V receptor revealed that a peptide, namely CNBr-19, contained an amino acid sequence which shows homology to the putative ATP binding site of the receptors for activin, the Caenorhabditis elegans daf-1 gene product, and TGF-beta type II receptor (Lin, H. Y., Wang, Y.-F., Ng-Eaton, E., Weinberg, R. A., and Lodish, H. F. (1992) Cell 68, 775-785). These results suggest that the TGF-beta type V receptor is a Ser/Thr-specific protein kinase and belongs to the new class of membrane receptors associated with a Ser/Thr-specific protein kinase activity.  相似文献   

12.
X H Feng  R Derynck 《The EMBO journal》1997,16(13):3912-3923
Transforming growth factor-beta (TGF-beta) signals through a heteromeric complex of related type I and type II serine/threonine kinase receptors. In Mv1Lu cells the type I receptor TbetaRI mediates TGF-beta-induced gene expression and growth inhibition, while the closely related type I receptors Tsk7L and TSR1 are inactive in these responses. Using chimeras between TbetaRI and Tsk7L or TSR1, we have defined the structural requirements for TGF-beta signaling by TbetaRI. The extracellular/transmembrane or cytoplasmic domains of TbetaRI and Tsk7L were functionally not equivalent. The juxtamembrane domain, including the GS motif, and most regions in the kinase domain can functionally substitute for each other, but the alphaC-beta4-beta5 region from kinase subdomains III to V conferred a distinct signaling ability. Replacement of this sequence in TbetaRI by the corresponding domain of Tsk7L inactivated TGF-beta signaling, whereas its introduction into Tsk7L conferred TGF-beta signaling. The differential signaling associated with this region was narrowed down to a sequence of eight amino acids, the L45 loop, which is exposed in the three-dimensional kinase structure and diverges highly between TbetaRI and Tsk7L or TSR1. Replacement of the L45 sequence in Tsk7L with that of TbetaRI conferred TGF-beta responsiveness to the Tsk7L cytoplasmic domain in Mv1Lu cells. Thus, the L45 sequence between kinase subdomains IV and V specifies TGF-beta responsiveness of the type I receptor.  相似文献   

13.
TGF-betas and TGF-beta receptors in atherosclerosis   总被引:4,自引:0,他引:4  
  相似文献   

14.
Cell signalling in the developing mammalian palate appears to involve various growth factors and hormones. An important developmental role for the transforming growth factor-beta (TGF-beta) class of growth factors is suggested by the immunolocalization of TGF-beta 1 in the palate during its ontogeny. This study examined the effects of TGF-beta stimulation of, as well as TGF-beta receptor profiles in, murine embryonic palate mesenchymal (MEPM) and human embryonic palate mesenchymal (HEPM) cells. Results showed that TGF-beta 1 (1 ng/ml) stimulated proliferation of HEPM cells and inhibited proliferation of MEPM cells in a dose-dependent manner. The time course of 125I-TGF-beta 1 binding to specific receptors was determined by incubating cells in the presence of 170 pM 125I-TGF-beta 1 for up to 4 h. In both cell types, at 37 degrees C, the binding of 125I-TGF-beta decreased linearly over 4 h, while at 4 degrees C, binding increased with time of incubation. Incubation of both cell types at 4 degrees C for 4 h, with increasing concentrations of 125I-TGF-beta 1, resulted in binding which demonstrated saturation kinetics. Scatchard analyses revealed one class of receptors for HEPM (K 32.3 pM) and MEPM (K 26.3 pM). However, SDS-PAGE analyses of 125I-TGF-beta chemically crosslinked to specific receptor sites revealed that both cell types contained the types I (65,000 Mr) and III (230,000 Mr) TGF-beta receptors while MEPM also contained the type II (86,000 Mr) receptor. Binding studies further demonstrated the ability of platelet-derived growth factor to transmodulate TGF-beta binding. These results indicate that the HEPM cell line and primary cultures of MEPM cells, although obtained from palates at similar developmental stages, are dramatically different in their responsiveness to TGF-beta and have disparate TGF-beta receptor profiles.  相似文献   

15.
Expression cloning and characterization of the TGF-beta type III receptor.   总被引:37,自引:0,他引:37  
The rat TGF-beta type III receptor cDNA has been cloned by overexpression in COS cells. The encoded receptor is an 853 amino acid protein with a large N-terminal extracellular domain containing at least one site for glycosaminoglycan addition, a single hydrophobic transmembrane domain, and a 41 amino acid cytoplasmic tail with no obvious signaling motif. Introduction of the cDNA into COS cells and L6 myoblasts induces expression of a heterogenously glycosylated 280-330 kd protein characteristic of the type III receptor that binds TGF-beta 1 specifically. In L6 myoblasts lacking the endogenous type III receptor, expression of the recombinant receptor leads to an increase in the amount of ligand bound and cross-linked to surface type II TGF-beta receptors. This indicates that the type III receptor may regulate the ligand-binding ability or surface expression of the type II receptor.  相似文献   

16.
The type III transforming growth factor-beta (TGF-beta) receptor is a cell surface chondroitin/heparan sulfate proteoglycan that binds various forms of TGF-beta with high affinity and specificity. Here, we have used a genetic approach to determine the requirement for glycosaminoglycan (GAG) chains for normal TGF-beta receptor expression and the role that the receptor proteoglycan core and GAG chains play in TGF-beta binding. Chinese hamster ovary (CHO) cells defective in GAG synthesis express on their surface 110-130-kDa type III receptor proteoglycan cores that can bind normal levels of TGF-beta compared to wild type CHO cells. The affinity of the receptor core for TGF-beta 1 and TGF-beta 2 in CHO cell mutants is similar to that of the TGF-beta receptor proteoglycan forms present in wild type CHO cells or in CHO cell mutants that have been allowed to bypass their metabolic defect and express the wild type proteoglycan phenotype. The binding properties of TGF-beta receptor types I and II in CHO cells and the growth-inhibitory response of CHO cell mutants to TGF-beta are not impaired by the absence of GAG chains in the type III receptor. These results show that the GAG chains are dispensable for type III receptor expression on the cell surface, binding of TGF-beta to the receptor core, and growth inhibitory response of the cells to TGF-beta. The evidence also suggests that the type III receptor may act as a multifunctional proteoglycan able to bind TGF-beta via the receptor core while performing another as yet unidentified function(s) via the GAG chains.  相似文献   

17.
Mature transforming growth factor-beta (TGF-beta) is proteolytically derived from the C terminus of a precursor protein. Latency-associated protein (LAP), the N-terminal remnant of the TGF-beta precursor, is able to bind and neutralize TGF-beta. Mature TGF-beta exerts its activity by binding and complexing members of two subfamilies of receptors, the type I and II receptors. In addition to these signaling receptors, TGF-beta can also interact with an accessory receptor termed the type III receptor. Using a surface plasmon resonance-based biosensor (BIAcore), we determined the mechanisms of interaction of four binding proteins (LAP, the type II and III receptor ectodomains (EDs), and a type II receptor ED/Fc chimera) with three TGF-beta isoforms, and we quantified their related kinetic parameters. Using global fitting based on a numerical integration data analysis method, we demonstrated that LAP and the type II receptor/Fc chimera interacted with the TGF-beta isoforms with a 1:1 stoichiometry. In contrast, the type II ED interactions with TGF-beta were best fit by a kinetic model assuming the presence of two independent binding sites on the ligand molecule. We also showed that the type III ED bound two TGF-beta molecules. Further experiments revealed that LAP was able to block the interactions of TGF-beta with the two EDs, but that the two EDs did not compete or cooperate with each other. Together, these results strongly support the existence of a cell-surface complex consisting of one type III receptor, two TGF-beta molecules, and four type II receptors, prior to the recruitment of the type I receptor for signal transduction. Additionally, our results indicate that the apparent dissociation rate constants are more predictive of the neutralizing potency of these TGF-beta-binding proteins (LAP, the type II and III receptor EDs, and the type II receptor/Fc chimera) than the apparent equilibrium constants.  相似文献   

18.
Transforming growth factor beta (TGF-beta) ligands exert their biological effects through type II (TbetaRII) and type I receptors (TbetaRI). Unlike TGF-beta1 and -beta3, TGF-beta2 appears to require the co-receptor betaglycan (type III receptor, TbetaRIII) for high affinity binding and signaling. Recently, the TbetaRIII null mouse was generated and revealed significant non-overlapping phenotypes with the TGF-beta2 null mouse, implying the existence of TbetaRIII independent mechanisms for TGF-beta2 signaling. Because a variant of the type II receptor, the type II-B receptor (TbetaRII-B), has been suggested to mediate TGF-beta2 signaling in the absence of TbetaRIII, we directly tested the ability of TbetaRII-B to bind TGF-beta2. Here we show that the soluble extracellular domain of the type II-B receptor (sTbetaRII-B.Fc) bound TGF-beta1 and TGF-beta3 with high affinity (K(d) values = 31.7 +/- 22.8 and 74.6 +/- 15.8 pm, respectively), but TGF-beta2 binding was undetectable at corresponding doses. Similar results were obtained for the soluble type II receptor (sTbetaRII.Fc). However, sTbetaRII.Fc or sTbetaRII-B.Fc in combination with soluble type I receptor (sTbetaRI.Fc) formed a high affinity complex that bound TGF-beta2, and this complex inhibited TGF-beta2 in a biological inhibition assay. These results show that TGF-beta2 has the potential to signal in the absence of TbetaRIII when sufficient TGF-beta2, TbetaRI, and TbetaRII or TbetaRII-B are present. Our data also support a cooperative model for receptor-ligand interactions, as has been suggested by crystallization studies of TGF-beta receptors and ligands. Our cell-free binding assay system will allow for testing of models of receptor-ligand complexes prior to actual solution of crystal structures.  相似文献   

19.
A new type high molecular weight receptor (type V receptor) of transforming growth factor beta (TGF-beta) was recently purified from bovine liver plasma membranes and appears not to be related to receptors previously described for TGF-beta (Pauline O'Grady, Ming-Der Kuo, Joseph J. Baldassare, Shuan Shian Huang and Jung San Huang [1991] J. Biol. Chem. 266:8583-8589). This type V receptor may be important in the regulation of cell growth by TGF-beta. We examined its distribution in a wide range of normal and transformed cells. The type V receptor was found to be expressed in many normal cells including cells of epithelial, endothelial, fibroblastic and chondrocytic origins. However, a number of human epithelial tumor cells (5 out of 6 examined) did not express detectable levels of the type V TGF-beta receptor. These results suggest that loss of the type V receptor may potentially contribute to the transformed state of certain epithelial tumor cells.  相似文献   

20.
Mature TGF-beta isoforms, which are covalent dimers, signal by binding to three types of cell surface receptors, the type I, II and III TGF-beta receptors. A complex composed of the TGF-beta ligand and the type I and II receptors is required for signaling. The type II receptor is responsible for recruiting TGF-beta into the heteromeric ligand/type I receptor/type II receptor complex. The purpose of this study was to test for the extent that avidity contributes to receptor affinity. Using a surface plasmon resonance (SPR)-based biosensor (the BIACORE), we captured the extracellular domain of the type II receptor (TbetaRIIED) at the biosensor surface in an oriented and stable manner by using a de novo designed coiled-coil (E/K coil) heterodimerizing system. We characterized the kinetics of binding of three TGF-beta isoforms to this immobilized TbetaRIIED. The results demonstrate that the stoichiometry of TGF-beta binding to TbetaRIIED was one dimeric ligand to two receptors. All three TGF-beta isoforms had rapid and similar association rates, but different dissociation rates, which resulted in the equilibrium dissociation constants being approximately 5pM for the TGF-beta1 and -beta3 isoforms, and 5nM for the TGF-beta2 isoform. Since these apparent affinities are at least four orders of magnitude higher than those determined when TGF-beta was immobilized, and are close to those determined for TbetaRII at the cell surface, we suggest that avidity contributes significantly to high affinity receptor binding both at the biosensor and cell surfaces. Finally, we demonstrated that the coiled-coil immobilization approach does not require the purification of the captured protein, making it an attractive tool for the rapid study of any protein-protein interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号