首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examine the Hoxc12 RNA expression pattern during both hair follicle morphogenesis and cycling in direct comparison to its only upstream neighbor, Hoxc13. Expression of both genes is restricted to the epidermal part of the follicle excluding the outer root sheath and interfollicular epidermis in a distinct stage-dependent and cyclical manner. During the progressive growth phase (anagen) of developing and cycling follicles, the distinct proximo-distal expression domain of Hoxc12 overlaps only proximally, at the upper-most region of the bulb, with the more proximally restricted Hoxc13 domain. This arrangement of the expression domains of the two genes along the proximal-toward-distal axis of increasing follicular differentiation correlates with the sequential expression of first Hoxc13 and then Hoxc12. This indicates a reversal of the typical temporal colinearity of Hox gene activation otherwise observed along the anterior-posterior morphogenetic axis of the embryo (review: Cell 78 (1994) 191).  相似文献   

2.
3.
Involucrin is a structural component of the keratinocyte cornified envelope that is expressed early in the keratinocyte differentiation process. It is a component of the initial envelope scaffolding and considered as a marker for keratinocyte terminal differentiation. The expression pattern of involucrin in human scalp skin and hair follicle cycle stages is not fully explored. This study addresses this issue and tests the hypothesis that "the expression of involucrin undergoes hair follicle cycle-dependent changes". A total of 50 normal human scalp skin biopsies were examined (healthy females, 51-62?years) using immunofluorescence staining methods and real-time PCR analysis. In each case, 50 hair follicles were analyzed (35, 10 and 5 follicles in anagen, catagen and telogen, respectively). Involucrin was prominently expressed in the human scalp skin and hair follicles, on both gene and protein levels. The protein expression showed hair follicle cycle-associated changes i.e. a very strong expression during early and mature anagen, intermediate to strong expression during catagen and prominent decline in the telogen phase. The expression value of involucrin in both anagen and catagen was statistically significantly higher than that of telogen hair follicles (p?相似文献   

4.
5.
6.
Transformation of amnion epithelium into skin and hair follicles   总被引:11,自引:0,他引:11  
There is increasing interest into the extent to which epithelial differentiation can be altered by mesenchymal influence, and the molecular basis for these changes. In this study, we investigated whether amnion epithelium could be transformed into skin and hair follicles by associating E12.5 to E14.5 mouse amnion from the ROSA 26 strain, with mouse embryonic hair-forming dermis from a wild-type strain. These associations were able to produce fully formed hair follicles with associated sebaceous glands, and skin epidermis. Using beta-galactosidase staining we were able to demonstrate that the follicular epithelium and skin epidermis, but not the associated dermal cells, originated from the amnion. As Noggin and Sonic hedgehog (Shh) were recently shown to be required for early chick ventral skin formation, and able to trigger skin and feather formation from chick amnion, we associated cells engineered to produce those two factors with mouse amnion. In a few cases, we obtained hair buds connected to a pluristratified epithelium; however, the transformation of the amnion was impeded by uncontrolled fibroblastic proliferation. In contrast to an earlier report, none of our control amnion specimens autonomously transformed into skin and hair follicles, indicating that specific influences are necessary to elicit follicle formation from the mouse amnion. The ability to turn amnion into skin and its appendages has practical potential for the tissue engineering of replacement skin, and related biotechnological approaches.  相似文献   

7.
Alcian Blue staining in MgCl-2 of various concentrations revealed that the basement membrane of dog hair follicles contains a large amount of glycosaminoglycan that increases with age, varies with breed, and is significantly greater than that of dermal collagen. This material is highly sulphated and of low molecular weight. Glycoprotein is also present in significantly greater amount than in dermal collagen. Active hair matrix contains clycosaminoglycan in similar amounts to epidermis but the glycoprotein content is much greater and staining is abolished in the keratinized cortex.  相似文献   

8.
9.
Most mammals are coated with pigmented hair. Melanocytes in each hair follicle produce melanin pigments for the hair during each hair cycle. The key to understanding the mechanism of cyclic melanin production is the melanocyte stem cell (MelSC) population, previously known as 'amelanotic melanocytes'. The MelSCs directly adhere to hair follicle stem cells, the niche cells for MelSCs and reside in the hair follicle bulge-subbulge area, the lower permanent portion of the hair follicle, to serve as a melanocyte reservoir for skin and hair pigmentation. MelSCs form a stem cell system within individual hair follicles and provide a 'hair pigmentary unit' for each cycle of hair pigmentation. This review focuses on the identification of MelSCs and their characteristics and explains the importance of the MelSC population in the mechanisms of hair pigmentation, hair greying, and skin repigmentation.  相似文献   

10.
Neonatal mouse skin is useful for studying changes in gene expression during development of hair follicles, as the mitotic activity of skin cells changes shortly after birth. Using ribonucleic acid (RNA) differential display, a 261-nt message has been identified in the skin, specifically on d 3–5 but not on d 2 after birth. Confirmation of its expression by ribonuclease protection assay showed that stronger expression is seen on d 3–5 compared with d 1–2. Using RNA ligase-mediated rapid amplification of 5′ complementary deoxyribonucleic acid ends, we have successfully isolated a 3046-bp gene, which has 93% sequence homology to a mouse teashirt1 gene. Amino acid analysis showed that it has 74% identity to the mouse teashirt1 protein and possesses zinc-finger motifs 1, 2, and 3. In situ hybridization data revealed that it is mainly expressed in the follicle bulb, including dermal papilla and matrix cells. As the proliferation of bulb cells is important to follicle development during this period, the finding of its strong expression on d 3–5 suggests that the identified gene is a potential candidate for follicle growth.  相似文献   

11.
Ziehl-Neelsen's carbol-fuchsin stain differentiates between the keratin of the medulla and the keratin of the cortex of hair shafts in sections of skin biopsies. Deparaffinized, hydrated sections of Bouin-fixed or formalin-fixed skin of sheep and goats are stained 20-21 hr at about 25° C in carbol-fuchsin. They are rinsed and decolorized in acid alcohol, washed and then counterstained in Harris' haematoxylin. If no additional counterstain is used, the medullary keratin will appear colorless against a dark red acid-fast cortex. In case orange G, as a saturated solution in 95% ethyl alcohol, is applied after the haematoxylin, the medulla will be orange against the red cortex.  相似文献   

12.
13.
14.
Studies with gene knockout mice have shown that Sonic hedgehog (Shh) is required for early development of hair follicles, but the role of this gene in the late stages of follicle development is not clear. By using an organ culture system of embryonic mouse skin, the role of Shh signaling in the early and late stages of follicle development was investigated. In the early stage of follicle development, the downward growth of the follicular epithelium was suppressed by cyclopamine, an inhibitor of Shh signaling, and accelerated by recombinant Shh. In addition, cyclopamine impaired dermal papilla formation, accompanied by the rearrangement of papilla cells, but not the elongation of the follicular epithelium at the later stage. These results suggest that Shh signaling is required for the proliferation of epithelial cells in the early development of hair follicles and for the morphogenetic movement of mesenchymal cells at the later stage of follicle development.  相似文献   

15.
16.
Mutations in WNT effector genes perturb hair follicle morphogenesis, suggesting key roles for WNT proteins in this process. We show that expression of Wnts 10b and 10a is upregulated in placodes at the onset of follicle morphogenesis and in postnatal hair follicles beginning a new cycle of hair growth. The expression of additional Wnt genes is observed in follicles at later stages of differentiation. Among these, we find that Wnt5a is expressed in the developing dermal condensate of wild type but not Sonic hedgehog (Shh)-null embryos, indicating that Wnt5a is a target of SHH in hair follicle morphogenesis. These results identify candidates for several key follicular signals and suggest that WNT and SHH signaling pathways interact to regulate hair follicle morphogenesis.  相似文献   

17.
Transthyretin is a serum and cerebrospinal fluid protein synthesized early in development by the liver, choroid plexus and several other tissues. It is a carrier protein for the antioxidant vitamins, retinol, and thyroid hormones. Transthyretin helps internalize thyroxine and retinol-binding protein into cells by binding to megalin, which is a multi-ligand receptor expressed on the luminal surface of various epithelia. We investigated the expression of transthyretin and its receptor megalin in the human skin; however, their expression pattern in the hair follicle is still to be elucidated. This study addresses this issue and tests the hypothesis that “the expression of transthyretin and megalin undergoes hair follicle cycle-dependent changes.” A total of 50 normal human scalp skin biopsies were examined (healthy females, 53–62 years) using immunofluorescence staining methods and real-time PCR. In each case, 50 hair follicles were analyzed (35, 10, and 5 follicles in anagen, catagen, and telogen, respectively). Transthyretin and megalin were prominently expressed in the human scalp skin and hair follicles, on both gene and protein levels. The concentrations of transthyretin and megalin were 0.12 and 0.03 Ul/ml, respectively, as indicated by PCR. The expression showed hair follicle cycle-associated changes i.e., strong expression during early and mature anagen, very weak expression during catagen and moderate expression during telogen. The expression values of these proteins in the anagen were statistically significantly higher than those of either catagen or telogen hair follicles (P ≤ 0.001). This study provides the first morphologic indication that transthyretin and megalin are variably expressed in the human scalp skin and hair follicles. It also reports variations in the expression of these proteins during hair follicle cycling. The clinical ramifications of these findings are open for further investigations.  相似文献   

18.
Bone morphogenetic protein 4 (Bmp4) plays a significant role in development. Using transgenic approaches, we studied the mechanisms controlling Bmp4 expression during primordial and mature tissue development, as well as in epithelium- and mesenchyme-derived components with hair follicles as a model. In this report, we demonstrated that the promoter region between the -0.26 and the -1.14 kb, highly conserved between human and mouse, controls Bmp4 expression in the epithelium-derived tissues but not in mesenchyme-derived tissues of hair follicles, suggesting that control modules for Bmp4 expression in epithelium-derived tissues and mesenchyme originated tissues are in separate regions. Using live embryos and mice, we demonstrated the temporal and spatial activities of these modules. We also demonstrated that control regions for Bmp4 expression in primordial and differentiated hair follicle tissues are separated. Therefore we present a model to explain a mechanism controlling expression of the Bmp4 gene in different tissue types, as well as different development stages as related to hair development.  相似文献   

19.
To examine the consequences of repressing beta-catenin/Lef1 signalling in mouse epidermis, we expressed a DeltaNLef1 transgene, which lacks the beta-catenin binding site, under the control of the keratin 14 promoter. No skin abnormalities were detected before the first postnatal hair cycle. However, from 6 weeks of age, mice underwent progressive hair loss which correlated with the development of dermal cysts. The cysts were derived from the base of the hair follicles and expressed morphological and molecular markers of interfollicular epidermis. Adult mice developed spontaneous skin tumours, most of which exhibited sebaceous differentiation, which could be indicative of an origin in the upper part of the hair follicle. The transgene continued to be expressed in the tumours and beta-catenin signalling was still inhibited, as evidenced by absence of cyclin D1 expression. However, patched mRNA expression was upregulated, suggesting that the sonic hedgehog pathway might play a role in tumour formation. Based on our results and previous data on the consequences of activating beta-catenin/Lef1 signalling in postnatal keratinocytes, we conclude that the level of beta-catenin signalling determines whether keratinocytes differentiate into hair or interfollicular epidermis, and that perturbation of the pathway by overexpression of DeltaNLef1 can lead to skin tumour formation.  相似文献   

20.
Pregnant mice were whole-body irradiated with a single acute dose of gamma-rays (60Co) to investigate the effect of gamma-radiation on embryonic melanoblasts. The effect was studied by scoring changes in the differentiation of melanocytes in the hair follicles of mice heterozygous for the recessive coat color mutation pink-eyed dilution (p). Abnormal round melanocytes were found in the hair matrix and the dermal papilla of F1 offspring 3.5 days after birth. However, these round melanocytes possessed a melanin deposition of similar intensity to normal hair follicular melanocytes. The frequency of the abnormal hair follicles increased in a dose-dependent manner. Moreover, higher frequencies were found in the animals irradiated at earlier stages of embryonic development. These results indicate that gamma-radiation affects dendritogenesis and the location of mouse melanocytes in the hair follicles, with greater effects seen at the earlier stages of development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号