首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phospholipid transfer protein (PLTP) regulates lipid metabolism and plays an important role in oxidative stress. PLTP is highly expressed in blood–brain barrier (BBB), but the role of PLTP in BBB integrity is not clear. In this study, BBB permeability was detected with in vivo multiphoton imaging and Evans blue assay. We found that PLTP deficient mice exhibited increased BBB permeability, as well as decreased expression of tight junction proteins occludin, zona occludens-1 (ZO-1) and claudin-5 in brain vessels. Cerebrovascular oxidative stress increased in PLTP deficient mice, including increased levels of reactive oxygen species (ROS) and lipid peroxidation marker 4-hydroxy-2-nonenal (HNE) and reduced superoxide dismutase (SOD) activity. Dietary supplementation of antioxidant vitamin E increased BBB integrity and tight junction proteins expression via reducing cerebrovascular oxidative stress. These findings indicated an essential role of PLTP in maintaining BBB integrity, possibly through its ability to transfer vitamin E, and modulate cerebrovascular oxidative stress.  相似文献   

2.
Previous studies have demonstrated that melatonin administration improves spatial learning and memory and hippocampal long-term potentiation in the adult Ts65Dn (TS) mouse, a model of Down syndrome (DS). This functional benefit of melatonin was accompanied by protection from cholinergic neurodegeneration and the attenuation of several hippocampal neuromorphological alterations in TS mice. Because oxidative stress contributes to the progression of cognitive deficits and neurodegeneration in DS, this study evaluates the antioxidant effects of melatonin in the brains of TS mice. Melatonin was administered to TS and control mice from 6 to 12 months of age and its effects on the oxidative state and levels of cellular senescence were evaluated. Melatonin treatment induced antioxidant and antiaging effects in the hippocampus of adult TS mice. Although melatonin administration did not regulate the activities of the main antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione S-transferase) in the cortex or hippocampus, melatonin decreased protein and lipid oxidative damage by reducing the thiobarbituric acid reactive substances (TBARS) and protein carbonyls (PC) levels in the TS hippocampus due to its ability to act as a free radical scavenger. Consistent with this reduction in oxidative stress, melatonin also decreased hippocampal senescence in TS animals by normalizing the density of senescence-associated β-galactosidase positive cells in the hippocampus. These results showed that this treatment attenuated the oxidative damage and cellular senescence in the brain of TS mice and support the use of melatonin as a potential therapeutic agent for age-related cognitive deficits and neurodegeneration in adults with DS.  相似文献   

3.
Oxidative stress, resulting from the generation of reactive oxygen species, contributes to the development of a multitude of age-related diseases. Current methods of assessing oxidative stress levels range from the detection of lipid peroxidation products, such as F(2)-isoprostanes and malondialdehyde, to monitoring the redox status of glutathione. While useful, traditional biomarkers of oxidative stress are not without their drawbacks, including low in vitro concentrations and possible artifact formation. In the present study, we utilize liquid chromatography coupled with tandem mass spectrometry for investigation into the use of a novel compound, ascorbylated 4-hydroxy-2-nonenal, as a potential biomarker of oxidative stress.  相似文献   

4.
5.
6.
Lipid peroxidation in neurodegeneration: new insights into Alzheimer's disease   总被引:10,自引:0,他引:10  
Imbalances of oxidative homeostasis and lipid peroxidation have been revealed as important factors involved in neurodegenerative disorders such as Alzheimer's disease. The brains of patients with Alzheimer's disease contain increased levels of lipid-peroxidation products such as 4-hydroxy-2-nonenal or acrolein, and enhanced lipid peroxidation can also be detected in cerebrospinal fluid and plasma from such patients. Recent research revealed that the interplay of transition metals, amyloid-beta peptide and lipid peroxidation might be responsible for increased oxidative stress and cell damage in this disease. In particular, the contrasting roles of amyloid-beta peptide, as a possible transition metal-chelating antioxidant for lipoproteins and a pro-oxidant when aggregated in brain tissue, has been the focus of discussion recently. In this context, lipid peroxidation has to be seen as an important part of the pathophysiological cascade in Alzheimer's disease, and its measurement in body fluids might serve as a therapy control for Alzheimer's disease and other neurodegenerative diseases.  相似文献   

7.
Down syndrome (DS) is a human genetic disease caused by trisomy of chromosome 21 and characterized by early developmental brain abnormalities. Dysfunctional endosomal pathway in neurons is an early event of DS and Alzheimer's disease. Recently, we have demonstrated that exosome secretion is upregulated in human DS postmortem brains, in the brain of the trisomic mouse model Ts[Rb(12.1716)]2Cje (Ts2) and by DS fibroblasts as compared with disomic controls. High levels of the tetraspanin CD63, a regulator of exosome biogenesis, were observed in DS brains. Partially blocking exosome secretion by DS fibroblasts exacerbated a pre‐existing early endosomal pathology. We thus hypothesized that enhanced CD63 expression induces generation of intraluminal vesicles (ILVs) in late endosomes/multivesicular bodies (MVBs), increasing exosome release as an endogenous mechanism to mitigate endosomal abnormalities in DS. Herein, we show a high‐resolution electron microscopy analysis of MVBs in neurons of the frontal cortex of 12‐month‐old Ts2 mice and littermate diploid controls. Our quantitative analysis revealed that Ts2 MVBs are larger, more abundant, and contain a higher number of ILVs per neuron compared to controls. These findings were further corroborated biochemically by Western blot analysis of purified endosomal fractions showing higher levels of ILVs proteins in the same fractions containing endosomal markers in the brain of Ts2 mice compared to controls. These data suggest that upregulation of ILVs production may be a key homeostatic mechanism to alleviate endosomal dysregulation via the endosomal–exosomal pathway.  相似文献   

8.
Chronic otitis media (OM) is common in Down syndrome (DS), but underlying aetiology is unclear. We analysed the entire available mouse resource of partial trisomy models of DS looking for histological evidence of chronic middle-ear inflammation. We found a highly penetrant OM in the Dp(16)1Yey mouse, which carries a complete trisomy of MMU16. No OM was found in the Dp(17)1Yey mouse or the Dp(10)1Yey mouse, suggesting disease loci are located only on MMU16. The Ts1Cje, Ts1RhR, Ts2Yah, and Ts65Dn trisomies and the transchomosomic Tc1 mouse did not develop OM. On the basis of these findings, we propose a two-locus model for chronic middle-ear inflammation in DS, based upon epistasis of the regions of HSA21 not in trisomy in the Tc1 mouse. We also conclude that environmental factors likely play an important role in disease onset.  相似文献   

9.
Abnormal mitochondrial function is present in patients with peripheral arterial disease and may contribute to its clinical manifestations. However, the specific biochemical mitochondrial defects and their association with increased oxidative stress have not been fully characterized. Gastrocnemius muscle was obtained from peripheral arterial disease patients (n = 25) and age-matched controls (n = 16) and mitochondrial parameters were measured. Complexes I through IV of the electron transport chain were individually evaluated to assess for isolated defects. Muscle was also evaluated for protein and lipid oxidative changes by measuring the levels of protein carbonyls, lipid hydroperoxides, and total 4-hydroxy-2-nonenal binding and for the activities of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase. Mitochondrial electron transport chain complexes I, III, and IV in arterial disease patients demonstrated significant reductions in enzymatic activities and mitochondrial respiration compared to controls. Oxidative stress biomarker analysis demonstrated significantly increased levels of protein carbonyls, lipid hydroperoxides, and 4-hydroxy-2-nonenal compared to control muscle. Antioxidant enzyme activities were altered, with a significant decrease in superoxide dismutase activity and significant increases in catalase and glutathione peroxidase. Peripheral arterial disease is associated with abnormal mitochondrial function and evidence of significant oxidative stress.  相似文献   

10.
11.
Down syndrome (DS) is the most frequent genetic disorder leading to intellectual disabilities and is caused by three copies of human chromosome 21. Mouse models are widely used to better understand the physiopathology in DS or to test new therapeutic approaches. The older and the most widely used mouse models are the trisomic Ts65Dn and the Ts1Cje mice. They display deficits similar to those observed in DS people, such as those in behavior and cognition or in neuronal abnormalities. The Ts65Dn model is currently used for further therapeutic assessment of candidate drugs. In both models, the trisomy was induced by reciprocal chromosomal translocations that were not further characterized. Using a comparative genomic approach, we have been able to locate precisely the translocation breakpoint in these two models and we took advantage of this finding to derive a new and more efficient Ts65Dn genotyping strategy. Furthermore, we found that the translocations introduce additional aneuploidy in both models, with a monosomy of seven genes in the most telomeric part of mouse chromosome 12 in the Ts1Cje and a trisomy of 60 centromeric genes on mouse chromosome 17 in the Ts65Dn. Finally, we report here the overexpression of the newly found aneuploid genes in the Ts65Dn heart and we discuss their potential impact on the validity of the DS model.  相似文献   

12.
Alzheimer's disease (AD) is an age-related neurodegenerative disorder. A number of hypotheses have been proposed to explain AD pathogenesis. One such hypothesis proposed to explain AD pathogenesis is the oxidative stress hypothesis. Increased levels of oxidative stress markers including the markers of lipid peroxidation such as acrolein, 4-hydroxy-2-trans-nonenal (HNE), malondialdehyde, etc. are found in brains of AD subjects. In this review, we focus principally on research conducted in the area of HNE in the central nervous system (CNS) of AD and mild cognitive impairment (MCI), and further, we discuss likely consequences of lipid peroxidation with respect to AD pathogenesis and progression. Based on the research conducted so far in the area of lipid peroxidation, it is suggested that lipid accessible antioxidant molecules could be a promising therapeutic approach to treat or slow progression of MCI and AD.  相似文献   

13.
The lack of suitable biomarkers of oxidative stress is a common problem for antioxidant intervention studies in humans. We evaluated the efficacy of vitamin C supplementation in decreasing biomarkers of lipid peroxidation in nonsmokers and in cigarette smokers, a commonly studied, free-living human model of chronic oxidative stress. Participants received ascorbic acid (500mg twice per day) or placebo for 17 days in a double-blind, placebo-controlled, randomized crossover design study. The urinary biomarkers assessed and reported herein are derived from 4-hydroperoxy-2-nonenal (HPNE) and include the mercapturic acid (MA) conjugates of 4-hydroxy-2(E)-nonenal (HNE), 1,4-dihydroxy-2(E)-nonene (DHN), and 4-oxo-2(E)-nonenol(ONO). Vitamin C supplementation decreased the urinary concentrations of both ONO-MA (p=0.0013) and HNE-MA (p=0.0213) by ~30%; however, neither cigarette smoking nor sex affected these biomarkers. In contrast, vitamin C supplementation decreased urinary concentrations of DHN-MA (three-way interaction p=0.0304) in nonsmoking men compared with nonsmoking women (p<0.05), as well as in nonsmoking men compared with smoking men (p<0.05). Vitamin C supplementation also decreased (p=0.0092) urinary total of metabolites by ~20%. Thus, HPNE metabolites can be reduced favorably in response to improved plasma ascorbic acid concentrations, an effect due to ascorbic acid antioxidant function.  相似文献   

14.
Although oxygen is essential for aerobic organisms, it also forms potentially harmful reactive oxygen species. For its simplicity, easy manipulation, and cultivation conditions, yeast is used as an attractive model in oxidative stress research. However, lack of polyunsaturated fatty acids in yeast membranes makes yeast unsuitable for research in the field of lipid peroxidation. Therefore, we have constructed a yeast strain expressing a Delta12 desaturase gene from the tropical rubber tree, Hevea brasiliensis. This yeast strain expresses the heterologous desaturase in an active form and, consequently, produces Delta9/Delta12 polyunsaturated fatty acids under inducing conditions. The functional expression of the heterologous desaturase did not affect cellular morphology or growth, indicating no general adverse effect on cellular physiology. However, the presence of polyunsaturated fatty acids changed the yeast's sensitivity to oxidative stress induced by addition of paraquat, tert-butylhydroperoxide, and hydrogen peroxide. This difference in sensitivity to the latter was followed by the formation of 4-hydroxy-2-nonenal, one of the end products of linoleic fatty acid peroxidation, which is known to play a role in cell growth control and signaling. Here we show that this yeast strain conditionally expressing the Delta12 desaturase gene provides a novel and well-defined eukaryotic model in lipid peroxidation research. Its potential to investigate the molecular basis of responses to oxidative stress, in particular the involvement of reactive aldehydes derived from fatty acid peroxidation, especially 4-hydroxy-2-nonenal, will be addressed.  相似文献   

15.
Down syndrome (DS) is the most common genetic cause of intellectual disability in children, and the number of adults with DS reaching old age is increasing. By the age of 40 years, virtually all people with DS have sufficient neuropathology for a postmortem diagnosis of Alzheimer disease (AD). Trisomy 21 in DS leads to an overexpression of many proteins, of which at least two are involved in oxidative stress and AD: superoxide dismutase 1 (SOD1) and amyloid precursor protein (APP). In this study, we tested the hypothesis that DS brains with neuropathological hallmarks of AD have more oxidative and nitrosative stress than those with DS but without significant AD pathology, as compared with similarly aged-matched non-DS controls. The frontal cortex was examined in 70 autopsy cases (n = 29 control and n = 41 DS). By ELISA, we quantified soluble and insoluble Aβ40 and Aβ42, as well as oligomers. Oxidative and nitrosative stress levels (protein carbonyls, 4-hydroxy-2-trans-nonenal (HNE)-bound proteins, and 3-nitrotyrosine) were measured by slot-blot. We found that soluble and insoluble amyloid beta peptide (Aβ) and oligomers increase as a function of age in DS frontal cortex. Of the oxidative stress markers, HNE-bound proteins were increased overall in DS. Protein carbonyls were correlated with Aβ40 levels. These results suggest that oxidative damage, but not nitrosative stress, may contribute to the onset and progression of AD pathogenesis in DS. Conceivably, treatment with antioxidants may provide a point of intervention to slow pathological alterations in DS.  相似文献   

16.
Enhanced oxidative stress plays an important role in the progression and onset of diabetes and its complications. Strategies or efforts meant to reduce the oxidative stress are needed which may mitigate these pathogenic processes. The present study aims to investigate the in vitro ameliorative potential of nine antioxidant molecules in L6 myotubes under oxidative stress condition induced by 4-hydroxy-2-nonenal and also to comprehend the gene expression patterns of oxidative stress genes upon the supplementation of different antioxidants in induced stress condition. The study results demonstrated a marked increase in the level of malondialdehyde and protein carbonyl content with a subsequent increase in the free radicals that was reversed by the pretreatment of different dietary antioxidant. From the expression analysis of the oxidative stress genes, it is evident that the expression of these genes is modulated by the presence of antioxidants. The highest expression was found in the cells treated with Insulin in conjugation with an antioxidant. Resveratrol is the most potent modulator followed by Mangiferin, Estragole, and Capsaicin. This comparative analysis ascertains the potency of Resveratrol along with Insulin in scavenging the reactive oxygen species (ROS) generated under induced stress conditions through antioxidant defense mechanism against excessive ROS production, contributing to the prevention of oxidative damage in L6 myotubes.  相似文献   

17.
In the present study, we find that cyclopentenone prostaglandins (PGs) of the J(2) series, naturally occurring derivatives of PGD(2), are potential inducers of intracellular oxidative stress that mediates cell degeneration. Based on an extensive screening of diverse chemical agents on induction of intracellular production of reactive oxygen species (ROS), we found that the cyclopentenone PGs, such as PGA(2), PGJ(2), Delta(12)-PGJ(2), and 15-deoxy-Delta(12,14)-PGJ(2), showed the most potent pro-oxidant effect on SH-SY5Y human neuroblastoma cells. As the intracellular events that mediate the PG cytotoxicity, we observed (i) the cellular redox alteration represented by depletion of antioxidant defenses, such as glutathione and glutathione peroxidase; (ii) a transient decrease in the mitochondrial membrane potential (Deltapsi); (iii) the production of protein-bound lipid peroxidation products, such as acrolein and 4-hydroxy-2-nonenal; and (iv) the accumulation of ubiquitinated proteins. These events correlated well with the reduction in cell viability. In addition, the thiol compound, N-acetylcysteine, could significantly inhibit the PG-induced ROS production, thereby preventing cytotoxicity, suggesting that the redox alteration is closely related to the pro-oxidant effect of cyclopentenone PGs. More strikingly, the lipid peroxidation end products, acrolein and 4-hydroxy-2-nonenal, detected in the PG-treated cells potently induced the ROS production, which was accompanied by the accumulation of ubiquitinated proteins and cell death, suggesting that the membrane lipid peroxidation products may represent one of the causative factors that potentiate the cytotoxic effect of cyclopentenone PGs by accelerating intracellular oxidative stress. These data suggest that the intracellular oxidative stress, represented by ROS production/lipid peroxidation and redox alteration, may underlie the well documented biological effects, such as antiproliferative and antitumor activities, of cyclopentenone PGs.  相似文献   

18.
Down's syndrome (DS) is one of the most frequent genetic disorders in humans. It has been suggested that overexpression of copper-zinc superoxide dismutase (SOD-1) in DS may be involved in some of the abnormalities observed, mainly neurodegenerative and immunopathological processes. One of the consequences is early thymic involution. Recently, Ts(1716)65Dn mice (Ts65Dn mice), made segmentally trisomic for a chromosome 16 segment, fulfill the criteria for a DS model. To study the possible role of SOD-1 overexpression in thymocyte biology, we analyzed the role of reactive oxygen intermediates during in vivo and in vitro programmed cell death (PCD) induced in the thymus of Ts65Dn mice. Our main findings can be summarized as follows. Ts65Dn thymuses exhibit greater PCD activity than controls, as ascertained by a combination of morphological, histochemical, and ultrastructural procedures. Ts65Dn thymocytes were highly susceptible to PCD induced by both LPS (in vivo) and dexamethasone, a synthetic glucocorticoid agonist (both in vivo and in vitro). Thymus abnormalities were probably caused by SOD-1 hyperexpression in Ts65Dn cells, in that reactive oxygen intermediate generation (specifically H2O2 production) is enhanced in thymocytes and clearly correlates with apoptosis. Similarly, oxidative injury correlated with the formation of lipid peroxidation by-products and antioxidants which partly inhibit PCD in thymocytes.  相似文献   

19.
Carbonyl stress is one of the important mechanisms of tissue damage in vascular complications of diabetes. In the present study, we observed that the plasminogen activator inhibitor-1 (PAI-1) levels in serum and its gene expression in adipose tissue were up-regulated in aged OLETF rats, model animals of obese type 2 diabetes. To study the mechanism of PAI-1 up-regulation, we examined the effect of advanced glycation end products (AGEs) and the product of lipid peroxidation (4-hydroxy-2-nonenal (HNE)), both of which are endogenously generated under carbonyl stress. Stimulation of primary white adipocytes by either AGE or HNE resulted in the elevation of PAI-1 in culture medium and at mRNA levels. The up-regulation of PAI-1 was also observed by incubating the cells in high glucose medium (30 mm, 48 h). The stimulatory effects by AGE or high glucose were inhibited by antioxidant, pyrrolidine dithiocarbamate, and reactive oxygen scavenger, probucol, suggesting a pivotal role of oxidative stress in white adipocytes. We also found that the effect by HNE was inhibited by antioxidant, N-acetylcysteine and that a specific inhibitor of glutathione biosynthesis, l-buthionine-S,R-sulfoximine, augmented the effect of subthreshold effect of HNE. Bioimaging of reactive oxygen species (ROS) by a fluorescent indicator, 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate, revealed ROS production in white adipocytes treated with AGE or HNE. These results suggest that cellular carbonyl stress induced by AGEs or HNE may stimulate PAI-1 synthesis in and release from adipose tissues through ROS formation.  相似文献   

20.
Oxidative stress-induced lipid peroxidation leads to the formation of cytotoxic and genotoxic 2-alkenals, such as 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE). Lipid-derived reactive aldehydes are subject to phase-2 metabolism and are predominantly found as mercapturic acid (MA) conjugates in urine. This study shows evidence for the in vivo formation of ONE and its phase-1 metabolites, 4-oxo-2-nonen-1-ol (ONO) and 4-oxo-2-nonenoic acid (ONA). We have detected the MA conjugates of HNE, 1,4-dihydroxy-2-nonene (DHN), 4-hydroxy-2-nonenoic acid (HNA), the lactone of HNA, ONE, ONO, and ONA in rat urine by liquid chromatography-tandem mass spectrometry comparison with synthetic standards prepared in our laboratory. CCl(4) treatment of rats, a widely accepted animal model of acute oxidative stress, resulted in a significant increase in the urinary levels of DHN-MA, HNA-MA lactone, ONE-MA, and ONA-MA. Our data suggest that conjugates of HNE and ONE metabolites have value as markers of in vivo oxidative stress and lipid peroxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号