首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
菠萝叶片PEP羧激酶与底物OAA和ATP及配基Mn^2 等结合时引起紫外差示吸收光谱峰位和方向上的变化。OAA与酶结合诱导产生的差示吸收光谱在268—280mm处有一个宽负峰。ATP与酶结合出现两个差示负峰(242.5和273.5nm)。双底物OAA和ATP同时与酶结合,光谱上呈现252nm和268nm两个峰。Mn^2 不论与ATP或与ATP OAA一起与酶反应时,皆使原来的峰位漂移,且正负方向逆转。酶蛋白在323nm有最大的荧光发射。OAA引起荧光发射强度增大,ATP及ATP Mn^2 则减弱荧光发射。Mn^2 与OAA及ATP的复合效应导致荧光强度进一步减弱。  相似文献   

2.
人肌肌酸激酶在SDS溶液中失活与构象变化的比较研究   总被引:3,自引:0,他引:3  
应用紫外差吸收光谱、荧光发射光谱、CD先谱等监测手段,研究了SDS溶液滴定人肌肌酸激酶时的构象与活力变化的关系。结果表明酶的活力丧失先于以紫外差吸收先谱、荧先发射谱和巯基暴露数目所监测到的构象变化。SDS滴定时引起的酶的荧光发射光谱的变化在低滴定度阶段随着SDS滴定量的增加,荧光强度下降,发射峰位红移,当SDS浓度达到2.1mmol/L时,荧光强度增大,继续增加SDS滴定量,荧光强度又降低,发射峰位红移直至终态。紫外差吸收光谱随着SDS溶液的加入,281nm.287nm和292nm的负差吸收峰增大。CD光谱结果表明在本实验所用的SDS浓度范围内,SDS对人肌肌酸激酶的二级结构几乎没有影响。上述结果支持了酶的活性部位构象柔性的观点。  相似文献   

3.
本文用荧光光谱,紫外差示光谱和CD谱研究果菠萝蛋白酶在不同浓度的脲溶液中的构象及酶活力的变化情况。酶的荧光强度随脲浓度增大而明显增加,8mol/L脲使荧光强度增强65%,发射峰出现红移。差示谱表明在232nm和288nm出现二个正峰,它们均随脲浓度增大而加剧,前者与主链构象变化有关,而后者与生色基团(Trp、Tyr)的微环境变化相关。CD谱表明:天然酶在208nm和225nm处有二个负峰,脲变性后,225nm的负峰基本上不随脲浓度增大而变化,但208nm峰则明显发生变化并逐渐出现红移,6mol/L以上此峰则完全消失。  相似文献   

4.
发现CBZ-Lys·pNP能有效地被菓菠萝蛋白酶(Fruit Bromelain E.C.3.4.22.5)作用,测得Km为4.167×10~(-4)mol/L,k_(cat)为742min~(-1)。以荧光和紫外差示光谱为监测手段,对酶分子构象变化进行研究。酶的荧光强度随胍浓度增大而逐渐下降,4mol/L胍变性时,发射峰自332nm红移到353nm,并在310nm处出现新的发射峰。酶的荧光强度都因SDS存在而下降,SDS浓度大于3.47mmol/L有所回升,并出现红移,同时在315nm处出现新的发射肩;紫外差示光谱显示在236nm有一个较显著的员峰,此峰与β-螺旋结构变化有关,278、286和295nm出现三个负峰,260nm有较小正峰,说明酶分子中Tyr、Trp和Phe的微环境发生了明显的变化。测定酶在不同浓度胍和SDS中的变性和失活速度常数,对酶构象变化及催化活力的关系作了比较研究,酶的失活速度均大于变性速度。  相似文献   

5.
光敏反应对过氧化氢酶的影响   总被引:1,自引:0,他引:1  
光氧化反应中,纯过氧化氢酶活性受光敏化剂血卟啉Ⅳ和核黄素的抑制。随光敏化剂浓度增高及照光时间延长,抑制程度加大。酶与光敏化剂反应后吸收光谱位移,峰形改变。紫外差示吸收光谱出现229nm负峰(血卟啉)和236—240nm峰(核黄素)。结果表明酶活的抑制与其蛋白构象的变化相关。  相似文献   

6.
目的:研究猪胰脂肪酶(porcine pancreas lipase,PPL)在丙二醇单相共溶体系中催化橄榄油水解反应的活性变化及其作用机理.方法:测定PPL在不同体积浓度的丙二醇溶液中催化橄榄油水解的活性、动力学参数变化及紫外光谱、紫外差示光谱、荧光光谱的变化情况.结果:体积分数为17%的丙二醇使PPL活性提高了55%;丙二醇处理后,PPL的νmax基本不变,而km值则明显下降;光谱分析发现,经丙二醇处理后,PPL的紫外吸收光谱发生蓝移,而紫外差示光谱则出现了两个明显的负峰,荧光发射峰强度显著降低.结论:体积分数为17%的丙二醇对PPL有一定的激活作用,该激活作用可能是由于在丙二醇溶液中PPL发生构型和构象的变化,提高了酶分子对底物的亲和力,从而引起酶活性的升高.  相似文献   

7.
为了探索甲醇影响胰蛋白酶催化活性的作用机理,将胰蛋白酶纯化到电泳纯的水平,用纯酶进行了催化动力学研究;测定了酶分子的紫外吸收光谱、紫外差示光谱和荧光发射光谱的变化.试验结果表明:胰蛋白酶经7%甲醇处理时,其比活力比对照提高了17.97%.经甲醇处理后的胰蛋白酶,其动力学参数Km值及Vmax值均得到提高,且Vmax提高幅度比较大.甲醇处理后,酶的紫外吸收光谱基本没有变化,其差示光谱出现明显的正峰和负峰,而其荧光发射光谱也基本不变,只是荧光强度有所增加.实验结果证明,在7%甲醇存在下,胰蛋白酶分子构型不变,酶活性的变化是甲醇引起酶分子构象改变的结果.  相似文献   

8.
为了探索二甲基亚砜对纤维素酶催化活性的影响,以羧甲基纤维素钠(CMC)为底物来研究纤维素酶纯酶在二甲基亚砜中的动力学变化、紫外吸收光谱、紫外差示光谱和荧光发射光谱。实验表明:在3%的二甲基亚砜中,纤维素酶的催化活性下降了46.78%;其Km值从缓冲液中的2.500 mg/mL上升到二甲基亚砜中的3.922 mg/mL;在二甲基亚砜中,酶分子的肽键紫外吸收稍有改变,但其氨基酸基团的紫外吸收没有改变;其紫外差示光谱出现明显的正峰和负峰;其荧光发射光谱没有改变。研究结果证明:二甲基亚砜通过轻微改变酶分子的肽链结构,使分子构象改变,导致酶分子对底物的亲和力下降,从而降低其催化活性。  相似文献   

9.
PEP诱导产生的差光谱在237nm是一强负峰,在252nm附近呈宽负峰。Mg~(2+)产生的差光谱在275nm附近为正的阔峰,在237nm处为一负峰。PEP、Mg~(2+)共同与酶作用的差光谱在263nm附近呈宽的负峰。正效应剂G6P、Gly及GG分别存在条件下PEP羧化酶的差光谱亦各具明显差异,在270nm以下光区内尤其显著。在284nm和291nm为两个负峰,Gly诱导的峰强度大于G6P的,而GG复合效应剂对此两峰的影响表现很大的协同作用。Mal作用于酶的差光谱在246nm处有一负峰。  相似文献   

10.
0.23T稳恒磁场对不同温度离体过氧化氢酶的磁效应研究   总被引:4,自引:1,他引:3  
研究了 0 .2 3T稳恒磁场对不同温度下的离体牛肝过氧化氢酶 (CAT)构象及活力的影响 ,并从分子水平讨论了磁场对不同温度的过氧化氢酶产生不同生物学效应的可能机制。将不同温度的天然酶液置于磁感应强度为0 .2 3T的磁场中分别处理一定的时间 ,处理过程中保持环境温度与酶液温度一致 ,撤离磁场后立即在相同实验条件下对其进行光谱分析及量热分析 ,并用Beers&Sizers法 (改良型 )测定酶活力。结果表明 ,磁场使 2 5℃过氧化氢酶的构象发生明显变化 ,表现为荧光偏振度增加、出现明显的差示扫描量热曲线、产生λ2 10nm~ 310nm的紫外差光谱以及λ330nm荧光发射峰的荧光强度改变 (荧光发射峰的峰位未移动 ) ,构象变化的同时酶活力增加 ;15℃过氧化氢酶的构象及活力变化规律与 2 5℃过氧化氢酶类似 ,但强度均弱于 2 5℃酶 ;而 4℃过氧化氢酶的构象及活力没有发生变化 ,表现出未受磁场处理的影响。相同实验条件下 ,磁场对不同温度的酶分子影响不同 ,随温度的增加 ,影响效应趋于显著。由于不同温度的酶分子之间的差异在于构象状态的不同 ,这表明酶分子自身的构象状态对磁场处理效果有极其重要的影响。不同温度的过氧化氢酶磁效应差异显著可能是由磁致酶构象变化的特殊机制所引起。磁场对酶分子构象的影响可能是通  相似文献   

11.
用近紫外CD光谱技术追踪了PEP羧化酶与各种配基的相互作用。底物PEP、必需金属离子Mg~( )、PEP-Mg~( )以及效应剂G6P、Gly、G6P-Gly,均可引起高粱叶片PEP羧化酶近紫外CD光谱各不相同的变化。这表明高粱叶片PEP羧化酶分子构象有较大的灵活性,不同的配基与酶相互作用可引起酶分子不同的构象变化,因而使酶分子表现出催化功能、调节特性、必需氨基酸残基的化学反应性以及稳定性诸方面的差异。  相似文献   

12.
Sullivan SM  Holyoak T 《Biochemistry》2007,46(35):10078-10088
The structures of the rat cytosolic isoform of phosphoenolpyruvate carboxykinase (PEPCK) reported in the PEPCK-Mn2+, -Mn2+-oxaloacetic acid (OAA), -Mn2+-OAA-Mn2+-guanosine-5'-diphosphate (GDP), and -Mn2+-Mn2+-guanosine-5'-tri-phosphate (GTP) complexes provide insight into the mechanism of phosphoryl transfer and decarboxylation mediated by this enzyme. OAA is observed to bind in a number of different orientations coordinating directly to the active site metal. The Mn2+-OAA and Mn2+-OAA-Mn2+GDP structures illustrate inner-sphere coordination of OAA to the manganese ion through the displacement of two of the three water molecules coordinated to the metal in the holo-enzyme by the C3 and C4 carbonyl oxygens. In the PEPCK-Mn2+-OAA complex, an alternate bound conformation of OAA is present. In this conformation, in addition to the previous interactions, the C1 carboxylate is directly coordinated to the active site Mn2+, displacing all of the waters coordinated to the metal in the holo-enzyme. In the PEPCK-Mn2+-GTP structure, the same water molecule displaced by the C1 carboxylate of OAA is displaced by one of the gamma-phosphate oxygens of the triphosphate nucleotide. The structures are consistent with a mechanism of direct in-line phosphoryl transfer, supported by the observed stereochemistry of the reaction. In the catalytically competent binding mode, the C1 carboxylate of OAA is sandwiched between R87 and R405 in an environment that would serve to facilitate decarboxylation. In the reverse reaction, these two arginines would form the CO2 binding site. Comparison of the Mn2+-OAA-Mn2+GDP and Mn2+-Mn2+GTP structures illustrates a marked difference in the bound conformations of the nucleotide substrates in which the GTP nucleotide is bound in a high-energy state resulting from the eclipsing of all three of the phosphoryl groups along the triphosphate chain. This contrasts a previously determined structure of PEPCK in complex with a triphosphate nucleotide analogue in which the analogue mirrors the conformation of GDP as opposed to GTP. Last, the structures illustrate a correlation between conformational changes in the P-loop, the nucleotide binding site, and the active site lid that are important for catalysis.  相似文献   

13.
Using physical techniques, circular dichroism and intrinsic and extrinsic fluorescence, the binding of divalent cations to soluble protein kinase C and their effects on protein conformation were analyzed. The enzyme copurifies with a significant concentration of endogenous Ca2+ as measured by atomic absorption spectrophotometry, however, this Ca2+ was insufficient to support enzyme activity. Intrinsic tryptophan fluorescence quenching occurred upon addition to the soluble enzyme of the divalent cations, Zn2+, Mg2+, Ca2+ or Mn2+, which was irreversible and unaffected by monovalent cations (0.5 M NaCl). Far ultraviolet (200-250 nm) circular dichroism spectra provided estimations of secondary structure and demonstrated that the purified enzyme is rich in alpha-helices (42%) suggesting a rather rigid structure. At Ca2+ or Mg2+ concentrations similar to those used for fluorescence quenching, the enzyme undergoes a conformational transition (42-24% alpha-helix, 31-54% random structures) with no significant change in beta-sheet structures (22-26%). Maximal effects on 1 microM enzyme were obtained at 200 microM Ca2+ or 100 microM Mg2+, the divalent cation binding having a higher affinity for Mg2+ than for Ca2+. The Ca2(+)-induced transition was time-dependent, while Mg2+ effects were immediate. In addition, there was no observed energy transfer for protein kinase C with the fluorescent Ca2(+)-binding site probe, terbium(III). This study suggests that divalent cation-induced changes in soluble protein kinase C structure may be an important step in in vitro analyses that has not yet been detected by standard biochemical enzymatic assays.  相似文献   

14.
Ultraviolet difference spectra are produced by the binding of divalent metal ions to metal-free alkaline phosphatase (EC 3.1.3.1). The interaction of the apoprotein with Zn2+, Mn2+, Co2+ and Cd2+, which induce the tight binding of one phosphate ion per dimer, give distinctly different ultraviolet spectra changes from Ni2+ and Hg2+ which do not induce phosphate binding. Spectrophotometric titrations at alkaline pH of various metallo-enzymes reveal a smaller number of ionizable tyrosines and a greater stability towards alkaline denaturation in the Zn2+- and Mn2+-enzymes than in the Ni2+-, Hg2+- and apoenzymes. The Zn2+- and Mn2+-enzymes have CD spectra in the region of the aromatic transitions that are different from the CD spectra of the Ni2+-, Hg2+- and apoenzymes. Modifications of arginines with 2,3-butanedione show that a smaller number of arginine residues are modified in the Zn2+-enzyme than in the Hg2+-enzyme. The presented data indicate that alkaline phosphatase from Escherichia coli must have a well-defined conformation in order to bind phosphate. Some metal ions (i.e. Zn2+, Co2+, Mn2+ and Cd2+), when interacting with the apoenzyme, alter the conformation of the protein molecule in such a way that it is able to interact with substrate molecules, while other metal ions (i.e. Ni2+ and Hg2+) are incapable of inducing the appropriate conformational change of the apoenzyme. These findings suggest an important structural function of the first two tightly bound metal ions in enzyme.  相似文献   

15.
Prawn (Penaeus penicillatus) acid phosphatase (EC 3.1.3.2) catalyzes the nonspecific hydrolysis of phosphate monoesters. The effects of some pollutants in sea water on the enzyme activity results in the loss of the biological function of the enzyme, which leads to disruption of phosphate metabolism in cells. This paper analyzes the effects of methanol on the activity and conformation of prawn acid phosphatase. The results show that low concentrations of methanol can lead to reversible inactivation. Inhibition of the enzyme by methanol is classified as non-competitive inhibition, and the inhibition constant (Ki) is 8.5%. Conformational changes of the enzyme molecule in methanol solutions of different concentrations were measured using fluorescence emission, differential UV-absorption, and circular dichroism spectra. Increased methanol concentrations caused the fluorescence emission intensity of the enzyme to increase. The ultraviolet difference spectra of the enzyme denatured with methanol had two negative peaks, at 222 and 270 nm, and a positive peak at 236 nm. The changes in the fluorescence and ultraviolet difference spectra reflected the changes of the microenvironments of tryptophan and tyrosine residues of the enzyme. The CD spectrum changes of the enzyme show that the secondary structure of the enzyme also changed some. These results suggest that methanol is a non-competitive inhibitor and the conformational integrity of the enzyme is essential for its activity.  相似文献   

16.
Arginine kinase (AK), a crucial enzyme in energy metabolism, buffers cellular ATP levels by catalyzing the reversible phosphoryl transfer between ATP and arginine. To better understand the role of Cys271 in conformational changes of AK from greasyback shrimp (Metapenaeus ensis), we replaced the residue with serine and alanine. A detailed comparison of the catalytic activity and conformation was made between wild-type AK and the mutants by means of activity analysis, ultraviolet (UV) difference, fluorescence spectrum and size exclusion chromatography (SEC). The results indicated that the catalytic activity of the two mutants was gone. The substrates, arginine-ADP-Mg2+ could induce conformational changes, and additional NO3 could induce further changes in both the native enzyme and the variants. We speculated that Cys271 might be located in the hinge region between the two domains of AK and cause enzyme conformational changes upon addition of substrate.  相似文献   

17.
The effect of ethanol on the activity of Penaeus penicillatus acid phosphatase has been studied. The results show that ethanol significantly inhibits enzyme activity as a non-competitive inhibitor, with Ki 8.75%. The conformational changes of the enzyme molecule induced by ethanol were followed using fluorescence emission, ultraviolet difference and circular dichroism (CD) spectra. Increasing the ethanol concentration caused the fluorescence emission intensity of the enzyme to increase. The ultraviolet difference spectra of the enzyme denatured with ethanol had two negative peaks at 220 and 278 nm, and a positive peak at 240 nm. Increasing the ethanol concentration produced a small shoulder peak at 287 nm in addition to the increases in the negative magnitudes of the 220 and 278 nm peaks. The changes of the fluorescence and ultraviolet difference spectra reflected the changes of the microenvironments of the tryptophan and tyrosine residues of the enzyme. The CD spectrum changes of the enzyme show that the secondary structure of the enzyme also changed. The results suggest that ethanol is a non-competitive inhibitor and the conformational integrity of the enzyme is essential for its activity.  相似文献   

18.
The ultraviolet resonance Raman (UV RR) spectra of functional ATP/membrane-bound Na+K+-ATPase complexes have been obtained. The substrate binding in the enzyme active site has been shown to be accompanied with significant changes in the electronic vibrational structure of the adenine ring. From the spectral analysis of ATP, 8-Br-ATP and 6-NHMe-adenine at various pH values the conclusion was made that N1 and the NH2, group and, probably, N7 of the substrate adenine part, interact with the protein surroundings via hydrogen bonds.  相似文献   

19.
The secondary and tertiary structure of the oligomeric arginase (EC 3.5.3.1) from beef liver was investigated by circular dichroism (CD) and fluorescence measurements. The far-ultraviolet CD spectrum of the enzyme at neutral pH is indicative of high helical content. The intrinsic fluorescence emission of the protein is due to tryptophan, the contribution of tyrosine being small. Upon excitation at 295 nm, the maximum of emission occurs at 330 nm, implying that the tryptophan residues are rather buried in a hydrophobic interior of the protein. Ethylenediaminetetraacetic acid (EDTA), which inactivates the enzyme by removing the functional Mn2+-ion from the enzyme, does not dissociate the enzyme into subunits, nor affect noticeably its secondary and tertiary structure. Inactivation occurs in the acid pH range, being complete at pH below 4. However, acidification up to pH 1.5 produced only limited changes in the far-ultra-violet CD spectrum and intrinsic fluorescence emission properties. The enzyme shows noteworthy thermal stability, as shown by measuring the residual activity after heating and by evaluating the temperature dependence of the CD signal at 220 nm and the intensity of emission fluorescence. A temperature of half inactivation (Tm) of 77 degrees was determined upon heating the enzyme at pH 7.5 in the presence of Mn2+-ions for 10 min; in the presence of EDTA, Tm is shifted to 55 degrees. Taken together, these observations indicate that the structural stability of beef liver arginase arises from a clustering of hydrophobic amino acids and from Mn2+-ion binding.  相似文献   

20.
Studies on isocitrate lyase isolated from Lupinus cotyledons   总被引:2,自引:0,他引:2  
Isocitrate lyase (threo-DS-isocitrate glyoxylate-lyase, EC 4.1.3.1) was isolated from cotyledons of Lupinus seedlings, purified 100-fold with respect to its initial specific activity and characterized (Km, pH optimum, Mg2+ requirement, sulfhydryl inhibitors, and synthase activity). The final purified preparation consisted of two homogeneous protein bands clearly separated by electrophoresis on polyacrylamide gel and chromatography on Sephadex G 200. Reducing agents are necessary for the maintenance of enzyme activity. The most effective reducing agent studied was 1,4-dithioerythreitol. The effect of several metabolites (oxalate, malonate, phosphoenolpyruvate, succinate, malate, tartrate, gluconate-6-phosphate, sorbose, sorbitol, and inositol) on the activity of purified preparations was tested. Oxalate proved to be the strongest inhibitor, seconded closely by phosphoenolpyruvate. The spectral characteristics of the purified enzyme are as follows: ultraviolet peak at 280 nm and fluorescence peak at 340 nm. The solid state infrared spectrum of the enzyme (lyophilized) showed that the enzyme was mostly in the alpha-helix conformation with very slight random orientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号