首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Antigens were extracted by the phenol-water method from each of the 11 strains of ' Bacteroides fragilis ' species, isolated from clinical material. Nine of these strains had been identified by the direct immunofluorescence test (IFT) as ' B. fragilis spp. fragilis ', and two as ' B. fragilis ssp. thetaiotaomicrori '.
These antigens were then used in the immunodiffusion test (ID), performed with antisera of six serotypes. Results of the ID test agreed in nine cases with those of IFT. An antigenic heterogeneity among strains of ' B. fragilis ssp. fragilis ' strains was noted. Antigens prepared in the same way from two strains did not react in the ID test with any of the antisera used although cells were positively stained in the IFT by specific anti-' B. fragilis ' serotype conjugates.  相似文献   

2.
Six ' Bacteroides fragilis ' serotype-specific fluorescein-labelled antisera were prepared and used in the direct immunofluorescence test (IFT). The method permitted the rapid detection of serotypes within the ' B. fragilis ' group. The specificity is connected with the phenol-water extracted endotoxins.  相似文献   

3.
Culture supernatants of 17 strains of the ' Bacteroides fragilis ' group were treated with four volumes of acetone. The precipitates, after dialysis and lyophilization, were used as antigens in the double diffusion test with antisera against serotype strains of ' B. fragilis '. In the culture supernatant of one strain we did not demonstrate the presence of serologically active substances. Sixteen preparations reacted in immunodiffusion with antiserum against ' B. ovatus ' serotype B. Ten preparations reacted with antiserum B only and six preparations gave, additionally, precipitation lines with other serotype antisera (A, E2).  相似文献   

4.
Sensory cilium biogenesis within Caenorhabditis elegans neurons depends on the kinesin-2-dependent intraflagellar transport (IFT) of ciliary precursors associated with IFT particles to the axoneme tip. Here we analyzed the molecular organization of the IFT machinery by comparing the in vivo transport and phenotypic profiles of multiple proteins involved in IFT and ciliogenesis. Based on their motility in wild-type and bbs (Bardet-Biedl syndrome) mutants, IFT proteins were classified into groups with similar transport profiles that we refer to as "modules." We also analyzed the distribution and transport of fluorescent IFT particles in multiple known ciliary mutants and 49 new ciliary mutants. Most of the latter mutants were snip-SNP mapped and one, namely dyf-14(ks69), was cloned and found to encode a conserved protein essential for ciliogenesis. The products of these ciliogenesis genes could also be assigned to the aforementioned set of modules or to specific aspects of ciliogenesis, based on IFT particle dynamics and ciliary mutant phenotypes. Although binding assays would be required to confirm direct physical interactions, the results are consistent with the hypothesis that the C. elegans IFT machinery has a modular design, consisting of modules IFT-subcomplex A, IFT-subcomplex B, and a BBS protein complex, in addition to motor and cargo modules, with each module contributing to distinct functional aspects of IFT or ciliogenesis.  相似文献   

5.
Disruption of intraflagellar transport (IFT) results in loss of flagella and cilia as well as their signaling activity, making it difficult to assess possible roles of IFT in signal transduction. In a recent issue of Cell, Wang et al. (2006) used a temperature-sensitive IFT mutant to separate flagella assembly from signaling activity, and they show that IFT has a direct role in forming signaling complexes in the flagella.  相似文献   

6.
Three different methods were used to prepare conjugates for the detection of rods of the Bacteroides fragilis group by direct immunofluorescence. Lyophilized conjugates were prepared. Three sets (five in each) of monovalent conjugates against serotype strains of B. fragilis (including conjugate E/E1 + E2) and polyvalent conjugate (A + B + C + D + E1 + E2) were obtained. Each conjugate was prepared in two variants: 1. unabsorbed, 2. absorbed with tissue powder prior to lyophilization. Conjugates obtained by precipitation of sera with 50% ethanol and direct coupling of gammaglobulins with stain were found to meet the requirement for good fluorescence reagents and are well suited for the detection of B. fragilis by direct immunofluorescence. Absorption of the conjugates with tissue powder before lyophilization did not affect their quality.  相似文献   

7.
Primary cilia are important sensory organelles. They exist in a wide variety of lengths, which could reflect different cell-specific functions. How cilium length is regulated is unclear, but it probably involves intraflagellar transport (IFT), which transports protein complexes along the ciliary axoneme. Studies in various organisms have identified the small, conserved family of ros-cross hybridizing kinases (RCK) as regulators of cilium length. Here we show that Intestinal Cell Kinase (ICK) and MAPK/MAK/MRK overlapping kinase (MOK), two members of this family, localize to cilia of mouse renal epithelial (IMCD-3) cells and negatively regulate cilium length. To analyze the effects of ICK and MOK on the IFT machinery, we set up live imaging of five fluorescently tagged IFT proteins: KIF3B, a subunit of kinesin-II, the main anterograde IFT motor, complex A protein IFT43, complex B protein IFT20, BBSome protein BBS8 and homodimeric kinesin KIF17, whose function in mammalian cilia is unclear. Interestingly, all five proteins moved at ∼0.45 µm/s in anterograde and retrograde direction, suggesting they are all transported by the same machinery. Moreover, GFP tagged ICK and MOK moved at similar velocities as the IFT proteins, suggesting they are part of, or transported by the IFT machinery. Indeed, loss- or gain-of-function of ICK affected IFT speeds: knockdown increased anterograde velocities, whereas overexpression reduced retrograde speed. In contrast, MOK knockdown or overexpression did not affect IFT speeds. Finally, we found that the effects of ICK or MOK knockdown on cilium length and IFT are suppressed by rapamycin treatment, suggesting that these effects require the mTORC1 pathway. Our results confirm the importance of RCK kinases as regulators of cilium length and IFT. However, whereas some of our results suggest a direct correlation between cilium length and IFT speed, other results indicate that cilium length can be modulated independent of IFT speed.  相似文献   

8.
We cloned a Tetrahymena thermophila gene, IFT52, encoding a homolog of the Chlamydomonas intraflagellar transport protein, IFT52. Disruption of IFT52 led to loss of cilia and incomplete cytokinesis, a phenotype indistinguishable from that of mutants lacking kinesin-II, a known ciliary assembly transporter. The cytokinesis failures seem to result from lack of cell movement rather than from direct involvement of ciliary assembly pathway components in cytokinesis. Spontaneous partial suppressors of the IFT52 null mutants occurred, which assembled cilia at high cell density and resorbed cilia at low cell density. The stimulating effect of high cell density on cilia formation is based on the creation of pericellular hypoxia. Thus, at least under certain conditions, ciliary assembly is affected by an extracellular signal and the Ift52p function may be integrated into signaling pathways that regulate ciliogenesis.  相似文献   

9.
Motile cilia protrude from cell surfaces and are necessary to create movement of cells and fluids in the body. At the molecular level, cilia contain several dynein molecular motor complexes including outer dynein arms (ODAs) that are attached periodically to the ciliary axoneme, where they hydrolyse ATP to create the force required for bending and motility of the cilium. ODAs are preassembled in the cytoplasm and subsequently trafficked into the cilium by the intraflagellar transport (IFT) system. In the case of the green alga Chlamydomonas reinhardtii, the adaptor protein ODA16 binds to ODAs and directly to the IFT complex component IFT46 to facilitate the ciliary import of ODAs. Here, we purified recombinant human IFT46 and ODA16, determined the high‐resolution crystal structure of the ODA16 protein, and carried out direct interaction studies of IFT46 and ODA16. The human ODA16 C‐terminal 320 residues adopt the fold of an eight‐bladed β‐propeller with high overall structural similarity to the Chlamydomonas ODA16. However, the small 80 residue N‐terminal domain, which in Chlamydomonas ODA16 is located on top of the β‐propeller and is required to form the binding cleft for IFT46, has no visible electron density in case of the human ODA16 structure. Furthermore, size exclusion chromatography and pull‐down experiments failed to detect a direct interaction between human ODA16 and IFT46. These data suggest that additional factors may be required for the ciliary import of ODAs in human cells with motile cilia.  相似文献   

10.
YT135.2.8, a Tn4400' insertion mutant of Bacteroides fragilis strain TM4000, grows poorly when used to infect Monika or Chinese hamster ovary (CHO) cell monolayers and is outcompeted by wild-type strains in mixed infections. YT135.2.8 also shows defects in the rat granuloma pouch model system in monoculture and is completely outcompeted by the wild-type strain in a mixed infection. In addition, this mutant shows defects in a new model system consisting of CHO suspension cell columns. All of these defects may be explained by the finding that YT135.2.8 shows decreased tolerance to exposure to atmospheric oxygen (less aerotolerant). The monolayer growth defect (MGD) of YT135.2.8 can be influenced significantly by the presence of sulphur-containing reducing agents (cysteine, dithiothreitol, thiodiglycol) or the non-sulphur reducing agent Tris-(2-carboxylethyl)phosphine (TCEP). The defects in YT135.2.8 can be complemented by a 6.6 kb fragment of the B. fragilis chromosome. DNA sequencing of this fragment and of the regions flanking the Tn4400' insertion in the B. fragilis chromosome revealed the presence of five open reading frames, corresponding to genes bat (Bacteroides aerotolerance) A, B, C, D, E, which form the Batl operon; Tn4400' inserted within batD. All of the hypothetical proteins possess one or more membrane-spanning domains. BatA and BatB show high similarity to each other but, like BatD, they show no match to sequences of known function in the databases. BatC and BatE contain 2-4 repeated sequences similar to the tetratricopeptide repeats (TPRs) seen in many eukaryotic proteins. The function of TPR sequences in protein interactions in other systems leads to the suggestion that the Bat proteins form a complex. The Batl complex may be involved in the generation or export of reducing power equivalents to the periplasm of the B. fragilis cell.  相似文献   

11.
12.
Cilia are microtubule-based organelles that assemble via intraflagellar transport (IFT) and function as signaling hubs on eukaryotic cells. IFT relies on molecular motors and IFT complexes that mediate the contacts with ciliary cargo. To elucidate the architecture of the IFT-B complex, we reconstituted and purified the nonameric IFT-B core from Chlamydomonas reinhardtii and determined the crystal structures of C. reinhardtii IFT70/52 and Tetrahymena IFT52/46 subcomplexes. The 2.5-Å resolution IFT70/52 structure shows that IFT52330–370 is buried deeply within the IFT70 tetratricopeptide repeat superhelix. Furthermore, the polycystic kidney disease protein IFT88 binds IFT52281–329 in a complex that interacts directly with IFT70/IFT52330–381 in trans. The structure of IFT52C/IFT46C was solved at 2.3 Å resolution, and we show that it is essential for IFT-B core integrity by mediating interaction between IFT88/70/52/46 and IFT81/74/27/25/22 subcomplexes. Consistent with this, overexpression of mammalian IFT52C in MDCK cells is dominant-negative and causes IFT protein mislocalization and disrupted ciliogenesis. These data further rationalize several ciliogenesis phenotypes of IFT mutant strains.  相似文献   

13.
A new type II restriction endonuclease, named BfrBI, was detected in two strains of Bacteroides fragilis, BE3 and AIP 10006 (NCTC 9343T). The enzyme BfrBI, an isoschizomer of NsiI and AvaIII, recognized the hexanucleotide sequence [5'-ATG decreases CAT-3'], with a cleavage site generating blunt ends.  相似文献   

14.
Intraflagellar transport (IFT) particles of Chlamydomonas reinhardtii contain two distinct protein complexes, A and B, composed of at least 6 and 15 protein subunits, respectively. As isolated from C. reinhardtii flagella, IFT complex B can be further reduced to a ∼500-kDa core that contains IFT88, 2× IFT81, 2× IFT74/72, IFT52, IFT46, IFT27, IFT25, and IFT22. In this study, yeast-based two-hybrid analysis was combined with bacterial coexpression to show that three of the core B subunits, IFT88, IFT52, and IFT46, interact directly with each other and, together, are capable of forming a ternary complex. Chemical cross-linking results support the IFT52-IFT88 interaction and provide additional evidence of an association between IFT27 and IFT81. With previous studies showing that IFT81 and IFT74/72 interact to form a (IFT81)2(IFT74/72)2 heterotetramer and that IFT27 and IFT25 form a heterodimer, the architecture of complex B is revealing itself. Last, electroporation of recombinant IFT46 was used to rescue flagellar assembly of a newly identified ift46 mutant and to monitor in vivo localization and movement of the IFT particles.  相似文献   

15.
Dientamoeba fragilis is a pathogenic protozoan parasite with a world-wide distribution. Interestingly, a resistant cyst stage has not been demonstrated and it is still an unsolved problem how this parasite can survive successfully outside the human host. D. fragilis was found in 2% of approximately 2500 individuals unselected who submitted stools for parasitological examination during 2001 in Padua (Italy). The goal of this study was to detect the protozoan stages and the duration of persistence of this protozoa in faeces stored in different environmental conditions. The trophozoites of D. fragilis were detected up to 60 days after the collection of the faeces stored at 4 degrees C and Giemsa stained. The laboratory detection rate of the organism is greatly enhanced by use of preservative to fix stool specimens immediately after passage. Alternatively, a microscopic observation of the collected stool has to be performed immediately after passage followed by examination of permanently-stained smears. Demonstration of the charateristic "golf-club" and "acanthopodia-like" structures in unstained fixed faecal material by direct microscopy (400x) are suitable for a rapid identification of D. fragilis.  相似文献   

16.
Intraflagellar transport (IFT) is an evolutionarily conserved mechanism thought to be required for the assembly and maintenance of all eukaryotic cilia and flagella. Although IFT proteins are present in cells with sensory cilia, the organization of IFT protein complexes in those cells has not been analyzed. To determine whether the IFT complex is conserved in the sensory cilia of photo-receptors, we investigated protein interactions among four mammalian IFT proteins: IFT88/Polaris, IFT57/Hippi, IFT52/NGD5, and IFT20. We demonstrate that IFT proteins extracted from bovine photoreceptor outer segments, a modified sensory cilium, co-fractionate at approximately 17 S, similar to IFT proteins extracted from mouse testis. Using antibodies to IFT88 and IFT57, we demonstrate that all four IFT proteins co-immunoprecipitate from lysates of mouse testis, kidney, and retina. We also extended our analysis to interactions outside of the IFT complex and demonstrate an ATP-regulated co-immunoprecipitation of heterotrimeric kinesin II with the IFT complex. The internal architecture of the IFT complex was investigated using the yeast two-hybrid system. IFT20 exhibited a strong interaction with IFT57/Hippi and the kinesin II subunit, KIF3B. Our data indicate that all four mammalian IFT proteins are part of a highly conserved complex in multiple ciliated cell types. Furthermore, IFT20 appears to bridge kinesin II with the IFT complex.  相似文献   

17.
Horizontal DNA transfer contributes significantly to the dissemination of antibiotic resistance genes in Bacteroides fragilis. To further our understanding of DNA transfer in B. fragilis, we isolated and characterized a new transfer factor, cLV25. cLV25 was isolated from B. fragilis LV25 by its capture on the nonmobilizable Escherichia coli-Bacteroides shuttle vector pGAT400DeltaBglII. Similar to other Bacteroides sp. transfer factors, cLV25 was mobilized in E. coli by the conjugative plasmid R751. Using Tn1000 mutagenesis and deletion analysis of cLV25, two mobilization genes, bmgA and bmgB, were identified, whose predicted proteins have similarity to DNA relaxases and mobilization proteins, respectively. In particular, BmgA and BmgB were homologous to MocA and MocB, respectively, the two mobilization proteins of the B. fragilis mobilizable transposon Tn4399. A cis-acting origin of transfer (oriT) was localized to a 353-bp region that included nearly all of the intergenic region between bmgB and orf22 and overlapped with the 3' end of orf22. This oriT contained a putative nic site sequence but showed no significant similarity to the oriT regions of other transfer factors, including Tn4399. Despite the lack of sequence similarity between the oriTs of cLV25 and Tn4399, a mutation in the cLV25 putative DNA relaxase, bmgA, was partially complemented by Tn4399. In addition to the functional cross-reaction with Tn4399, a second distinguishing feature of cLV25 is that predicted proteins have similarity to proteins encoded not only by Tn4399 but by several Bacteroides sp. transfer factors, including NBU1, NBU2, CTnDOT, Tn4555, and Tn5520.  相似文献   

18.
Required for the assembly and maintenance of eukaryotic cilia and flagella, intraflagellar transport (IFT) consists of the bidirectional movement of large protein particles between the base and the distal tip of the organelle. Anterograde movement of particles away from the cell body is mediated by kinesin-2, whereas retrograde movement away from the flagellar tip is powered by cytoplasmic dynein 1b/2. IFT particles contain multiple copies of two distinct protein complexes, A and B, which contain at least 6 and 11 protein subunits, respectively. In this study, we have used increased ionic strength to remove four peripheral subunits from the IFT complex B of Chlamydomonas reinhardtii, revealing a 500-kDa core that contains IFT88, IFT81, IFT74/72, IFT52, IFT46, and IFT27. This result demonstrates that the complex B subunits, IFT172, IFT80, IFT57, and IFT20 are not required for the core subunits to stay associated. Chemical cross-linking of the complex B core resulted in multiple IFT81-74/72 products. Yeast-based two-hybrid and three-hybrid analyses were then used to show that IFT81 and IFT74/72 directly interact to form a higher order oligomer consistent with a tetrameric complex. Similar analysis of the vertebrate IFT81 and IFT74/72 homologues revealed that this interaction has been evolutionarily conserved. We hypothesize that these proteins form a tetrameric complex, (IFT81)2(IFT74/72)2, which serves as a scaffold for the formation of the intact IFT complex B.  相似文献   

19.
Certain ciliary transmembrane and membrane-associated signaling proteins export from cilia as intraflagellar transport (IFT) cargoes in a BBSome-dependent manner. Upon reaching the ciliary tip via anterograde IFT, the BBSome disassembles before being reassembled to form an intact entity for cargo phospholipase D (PLD) coupling. During this BBSome remodeling process, Chlamydomonas Rab-like 4 GTPase IFT27, by binding its partner IFT25 to form the heterodimeric IFT25/27, is indispensable for BBSome reassembly. Here, we show that IFT27 binds IFT25 in an IFT27 nucleotide-independent manner. IFT25/27 and the IFT subcomplexes IFT-A and -B are irrelevant for maintaining the stability of one another. GTP-loading onto IFT27 enhances the IFT25/27 affinity for binding to the IFT-B subcomplex core IFT-B1 entity in cytoplasm, while GDP-bound IFT27 does not prevent IFT25/27 from entering and cycling through cilia by integrating into IFT-B1. Upon at the ciliary tip, IFT25/27 cycles on and off IFT-B1 and this process is irrelevant with the nucleotide state of IFT27. During BBSome remodeling at the ciliary tip, IFT25/27 promotes BBSome reassembly independent of IFT27 nucleotide state, making postremodeled BBSomes available for PLD to interact with. Thus, IFT25/27 facilitates BBSome-dependent PLD export from cilia via controlling availability of intact BBSomes at the ciliary tip, while IFT27 nucleotide state does not participate in this regulatory event.  相似文献   

20.
The intraflagellar transport (IFT) machinery consists of the anterograde motor kinesin‐II, the retrograde motor IFT dynein, and the IFT‐A and ‐B complexes. However, the interaction among IFT motors and IFT complexes during IFT remains elusive. Here, we show that the IFT‐B protein IFT54 interacts with both kinesin‐II and IFT dynein and regulates anterograde IFT. Deletion of residues 342–356 of Chlamydomonas IFT54 resulted in diminished anterograde traffic of IFT and accumulation of IFT motors and complexes in the proximal region of cilia. IFT54 directly interacted with kinesin‐II and this interaction was strengthened for the IFT54Δ342–356 mutant in vitro and in vivo. The deletion of residues 261–275 of IFT54 reduced ciliary entry and anterograde traffic of IFT dynein with accumulation of IFT complexes near the ciliary tip. IFT54 directly interacted with IFT dynein subunit D1bLIC, and deletion of residues 261–275 reduced this interaction. The interactions between IFT54 and the IFT motors were also observed in mammalian cells. Our data indicate a central role for IFT54 in binding the IFT motors during anterograde IFT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号