首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
不同栖息地状态下物种竞争模式及模拟研究与应用   总被引:5,自引:3,他引:2  
梁仁君  林振山  陈玲玲 《生态学报》2006,26(10):3308-3316
物种竞争是影响生态系统演化的重要生态过程之一.而物种在受人类影响出现不同程度毁坏的栖息地上的演化又是非常复杂的,因此研究物种演化对栖息地毁坏的响应是非常必要的.在Tilman研究工作的基础上,将竞争系数引入集合种群动力模式,建立了多物种集合种群竞争共存的数学模型,并对5-物种集合种群在不同栖息地状态下的竞争动态进行了计算机模拟研究.结果表明:(1)不同结构的群落(q值不同),物种之间的竞争排斥作用强度不同,优势物种明显的群落,物种之间的排斥强度大;(2)随着栖息地毁坏程度的增加,对优势物种的负面影响逐渐减小,而对弱势物种的负面影响逐渐增加;(3)随着栖息地恢复幅度的增加,优势物种和弱势物种之间的竞争越强烈,优势物种受到的竞争排斥加大,而弱势物种逐渐变强,出现了强者变弱、弱者变强的格局;(4)物种竞争排斥与共存受迁移扩散能力和竞争能力影响很大,竞争共存的条件是其竞争能力与扩散能力呈非线性负相关关系;(5)竞争共存的物种的强弱序列发生了变化.  相似文献   

2.
莫冉  宋卫信  李群  张锋 《生态学报》2021,41(16):6506-6512
互养关系(cross-feeding)是微生物物种之间普遍存在的一种相互关系,其中物种利用环境中其他成员的代谢产物以促进自身生长的情形称为代谢互养关系,这种关系对物种间的竞争结果往往有很大影响,甚至会改变种群结构。为了研究代谢互养关系在维持微生物物种多样性中的作用,构建包含不同代谢互养关系的资源竞争模型,这些模型既体现了微生物物种竞争资源时种群密度及资源量的动态,也展示了物种利用其他竞争者的代谢资源对自身生存状况的影响。数值模拟结果显示:(1)考虑微生物中不同的代谢互养关系结构:两物种间单向互养、双向互养以及多物种间的互养,不同的互养关系都可以促进竞争物种稳定共存,竞争中处于劣势的物种通过利用其他竞争成员的代谢产物,打破外界资源量对其生长的限制,改变原本消亡的命运;而处于优势的物种则通过利用其他竞争成员的代谢产物,增大种群密度。(2)多物种竞争同一种有限资源时,不是所有物种都能共存,在四物种模拟中,原本处于最劣势的物种灭绝,其余三者共存。物种产生代谢资源对其本身是"不利"的,如果在模拟中物种利用代谢资源的能力相同,那么物种竞争外界资源的劣势就很可能无法被抵消。通过改变资源利用率发现只有互养关系中代谢资源的利用可以弥补劣势种在竞争外界资源时的不足,多物种才可以全部共存。(3)验证数值模拟结果的普遍性,分析参数变化对共存的影响,结果表明代谢互养关系促进的共存对代谢资源相关参数不敏感,参数的改变只影响平衡态时物种的种群密度。所以,代谢互养关系可以促进相互竞争的微生物物种共存,即微生物之间的互养关系很可能是维持物种多样性的一种机制。  相似文献   

3.
方笛熙  万霞  毛婉琼  张锋 《生态学报》2023,43(17):7109-7117
病原体感染对种间竞争的影响可能是因为改变了宿主的资源利用过程,然而竞争模型(Lotka-Volterra)由于参数化竞争系数而忽略了资源的动态变化过程,因此基于此类模型的研究无法揭示病原体对宿主资源利用的影响。基于Tilman的资源竞争理论构建了病原体感染一个物种的资源竞争模型,通过分析宿主物种资源利用效率的变化探讨了病原体对种间竞争的影响。结果表明:(1)病原体降低了宿主对资源的消耗率(消费矢量变短),抬高了对资源的最低需求(零等倾线上移),这意味着宿主的竞争力减弱;(2)虽然感染影响了竞争物种的密度,但不会改变共存物种的共存状态;(3)病原体可以使宿主物种的竞争对手更容易入侵,形成共存局面,极大地扩大了竞争物种共存的参数范围,本质上促进了物种多样性维持;(4)病原体的传播率和毒性也复杂地影响了竞争物种共存,传播率越大越能促进物种共存,而中等强度毒性最能促进物种共存。研究结果明确了病原体对物种资源利用模式的潜在改变,强调了病原体在物种共存和生物多样性维持中的重要性。  相似文献   

4.
外来物种入侵后的多物种竞争共存的集合种群模型   总被引:3,自引:0,他引:3  
时培建  戈峰  王建国  郭世权 《生态学报》2009,29(3):1241-1250
基于多物种竞争共存模型,提出外来物种与本地物种竞争共存途径的两种假想:外来物种通过插队竞争与本地物种实现共存;外来物种通过等位竞争与本地物种实现共存.并提出根据外来物种在两种竞争共存模式下占据生境斑块比例的稳定值大小来判断外来物种和本地物种的竞争共存途径.根据两种假想,分别建立了外来物种插队竞争共存模型和等位竞争共存模型.通过应用数学软件Mathematica 4.0对两个模型进行了模拟,得出以下结论:在外来物种与本地物种竞争共存状态下,如果外来物种通过插队竞争与本地物种实现共存,当本地物种竞争力差异较大时,外来物种极易对本地稀少物种构成危害.虽然外来物种不会直接造成本地稀少物种的灭绝,但是会使本地稀少物种的生境斑块急剧减少,增加本地稀少物种灭绝的可能性,而当本地物种竞争力差异较小时,外来物种对本地所有物种的影响都较小.如果外来物种通过等位竞争与本地物种实现共存,无论本地物种竞争力差异大小与否,外来物种只是影响到与其生态位相同的本地物种,影响程度取决于外来物种侵入时所占据生境斑块的比例大小.  相似文献   

5.
竞争关系的对称性是塑造植物物种空间分布格局和影响物种共存重要机制之一,对其开展研究不仅对于揭示植物群落构建机制具有重要意义,也有助于解析群落演替的驱动力。在贵州赤水湿热河谷内的芭蕉群落中建设固定样地,对1989棵植物个体进行空间定位和物种识别并记录胸径等个体属性。采用对数相关函数和标记变异系数分析(marked variogram)等空间统计方法检测优势种的空间分布格局和竞争对称性,结果如下:(1)芭蕉(Musa sp.),粗糠柴(M.philippensis),粗叶木(L.chinensis),川钓樟(L.pulcherrima),红果黄肉楠(A.cupularis)等5种优势种均表现为小尺度下的种内聚集分布,其中芭蕉主要采用克隆繁殖,其重要值达33.6%,且种内聚集度最大。(2)芭蕉种群在5 m尺度下呈现出显著的种内对称性竞争,这一竞争过程减少了种群自疏作用并推动种内聚集分布格局的形成,增加了该种群在森林中的生存力。(3)芭蕉与其余4种优势种之间的不对称竞争过程导致了种间负关联。结果表明,不同优势种在种间竞争对称性上的差异说明了植物种群繁殖和扩散方式是群落构建的重要影响因素之一,相比于有性繁殖过程,采用无性克隆繁殖的植物个体可通过种内对称竞争机制来减少自疏以增加种群生存力,并通过与相邻异种个体的不对称竞争过程来提升种群获取有限资源的能力,进而成为演替中的优势个体。研究结果可为今后制定植物物种多样性保护政策提供科学参考。  相似文献   

6.
用一次性培养结合Monod方程测得海洋微藻-亚心型扁藻(Tetraselmis subcordiformis(Wile)Hazen)与大型海藻-孔石莼(Ulva pertusa Kjellm.)磷限制下的生长动力参数。孔石莼具有较低的半饱和生长常数及最大生长率,其分别为0.016μmol/L和0.16d^-1,而亚心型扁藻的半饱和生长常数和最大生长率分别是0.021μmol/L和0.83d^-1。两种藻类间的营养竞争实验采用半连续培养法在磷限制制条件下进行,实验过程中,分别对两者施予相同或不同的去除率,使两者享有相同或不同的资源需求值R^*。由Monod方程所作的竞争预测与实验观察结果的比较显示:仅在两种藻类间的资源需求值R^*差异显著(t检验,P<0.01)时,Monod方程才能对竞争结果作出较为准确的预测;在两种藻类享的相同的资源需求值R^*时,亚心型扁藻在竞争中取代孔石莼。Monod模型仅能部分预测大型海藻与海洋微藻间的竞争结果。  相似文献   

7.
在徐彩琳和Tilman研究工作的基础上,将竞争系数引入集合种群动力模式,建立了集合种群物种之间竞争的数学模型,并对集合种群5-物种的竞争动态进行了计算机模拟研究.结果表明:物种竞争排除与共存受迁移扩散能力和竞争能力影响很大,排除原理在理论上是存在的,在广域集合种群和实际中物种是竞争共存的,共存的条件是其竞争能力与扩散能力呈非线性负相关关系,竞争的结果使物种的强弱序列发生变化.  相似文献   

8.
对于非捕食 被捕食(食饵)生态系统,强弱物种之间存在一定的竞争影响.在不考虑栖息地毁坏的情况下,引进双向竞争机制,将Tilman的单向竞争模式推广为n集合种群双向竞争模型,并对6-集合种群的竞争动态进行了计算机模拟研究.结果表明,在平衡态,种群竞争共存的条件是其竞争能力与扩散能力呈现指数型负相关关系,竞争的结果使物种的强弱序列发生变化;物种竞争排除与共存受迁移扩散能力和竞争能力影响很大,在局域斑块上竞争排斥的集合种群在广域尺度上可以竞争共存,即逃亡共存.  相似文献   

9.
戴云山罗浮栲林主要乔木树种营养生态位研究   总被引:4,自引:1,他引:3  
通过生态位空间分割,应用多维生态位宽度和生态位重叠分析戴云山罗浮栲(Castanopsis fabri)群落主要乔木树种在不同资源空间中的营养利用情况。结果表明,各物种在不同资源空间的营养利用情况存在差异。同一物种不同龄级生态位宽度不同,同一龄级不同物种生态位宽度也存在差异。罗浮栲天然林主要种群生态位重叠值介于0.2~0.3的有33对,占27.5%;大于0.3的有51对,占42.5%,群落中优势种种群生态位具有较大程度重叠,对资源的利用能力相似且竞争格局明显。乔木层中,个体多度分布较大的罗浮栲与其它树种生态位重叠在0.042~0.424,罗浮栲与其它物种在资源利用上所受到的竞争相对较弱,在一定程度上决定了该种群在群落中的优势地位。按照经典的分层频度分析,罗浮栲种群属于典型的衰退种,与群落演替的实际情况相一致。  相似文献   

10.
生态群落物种共存的进化机制   总被引:14,自引:0,他引:14  
本文概述了目前对生态群落的物种共存研究中存在的若干问题及动、植物群落物种共存机制的研究进展。植物群落的物种共存主要介绍与环境、种子再迁移、生态位分化、竞争平衡理论、种库假设、再生生态位等有关的几种假设、生态学上相似种的共存及“原”群落概念等。动物群落的物种共存机制主要从以下几方面叙述:(1)异质环境中的资源分割,主要指动物斑状滋养的不同利用;(2)避免竞争排斥的行为机制,如边缘效应、聚群效应、扩散行为、相互作用和干扰;(3)特化者和泛化者的共存,包括:竞争是物种向多功能进化的作用力、最佳觅食理论与生态学特化及特化概念的发展。最后指出进一步研究的方向。  相似文献   

11.
Simple mathematical models are used to investigate the coexistence of two consumers using a single limiting resource that is distributed over distinct patches, and that has unequal growth rates in the different patches. Relatively low movement rates or high demographic rates of an inefficient resource exploiter allow it to coexist at a stable equilibrium with a more efficient species whose ratio of movement to demographic rates is lower. The range of conditions allowing coexistence depends on the between‐patch heterogeneity in resource growth rates, but this range can be quite broad. The between‐patch movement of the more efficient consumer turns patches with high resource growth rates into sources, while low‐growth‐rate patches effectively become sinks. A less efficient species can coexist with or even exclude the more efficient species from the global environment if it is better able to bias its spatial distribution towards the source patches. This can be accomplished with density independent dispersal if the less efficient species has a lower ratio of per capita between‐patch movement rate to demographic rates. Conditions that maximize the range of efficiencies allowing coexistence of two species are: a relatively high level of heterogeneity in resource growth conditions; high dispersal (or low demographic rates) of the superior competitor; and low dispersal (or high demographic rates) of the inferior competitor. Global exclusion of the more efficient competitor requires that the inferior competitor have sufficient movement to also produce a source‐sink environment.  相似文献   

12.
Competition in variable environments: experiments with planktonic rotifers   总被引:4,自引:0,他引:4  
1. In a constant environment, competition often tends to reduce species diversity. However, several theories predict that temporal variation in the environment can slow competitive exclusion and allow competing species to coexist. This study reports on laboratory competition experiments in which two pairs of planktonic rotifer species competed for a phytoplankton resource under different conditions of temporal variability in resource supply.
2. For both species pairs, Keratella cochlearis dominated under all conditions of temporal variability, and the other species ( Brachionus calyciflorus or Synchaeta sp.) almost always went extinct. Increasing temporal variation in resource supply slowed competitive exclusion but did not change competitive outcome or allow coexistence.
3. Rotifers show a gleaner–opportunist trade-off, because gleaner species have low threshold resource levels ( R *) and low maximum population growth rates, while opportunist species have the opposite characteristics. In the competition experiments, the gleaner always won and the opportunists always lost. Thus, a gleaner–opportunist trade-off was not sufficient to facilitate coexistence under conditions of resource variability. Instead, the winning species had both the lowest R * and the greatest ability to store resources and ration their use during times of extreme resource scarcity.  相似文献   

13.
An 11-year competition experiment among combinations of six prairie perennial plant species showed that resource competition theory generally predicted the long-term outcome of competition. We grew each species in replicated monocultures to determine its requirements for soil nitrate (R*) and light (I*). In six pairwise combinations, the species with the lower R* and I* excluded its competitor, as predicted by theory. In the remaining two pairwise combinations, one species had a lower R*, and the second had a lower I*; these species pairs coexisted, although it is unclear whether resource competition alone was responsible for their coexistence. Smaller differences in R* or I* between competing species led to slower rates of competitive exclusion, and the influence of R* differences on the rate of competitive exclusion was more pronounced on low-nitrogen soils, while the influence of I* differences was more pronounced on high-nitrogen (low-light) soils. These results were not explained by differences in initial species abundances or neutrality. However, only a few of our paired species coexisted under our experimentally imposed conditions (homogeneous soils, high seeding densities, minimal disturbance, regular water, and low herbivory levels), suggesting that other coexistence mechanisms help generate the diversity observed in natural communities.  相似文献   

14.
Theories of species coexistence often describe a trade‐off between colonising and competitive abilities. In sessile marine invertebrates, this trade‐off can manifest as trends in species distributions relative to the size of isolated patches of substrate. Based on their abilities to find available substrate and competitively exclude neighbours, good colonisers tend to dominate smaller patches, whereas better competitors tend to monopolise larger patches. In theory, species with equivalent colonising and competitive abilities should display similar distributions across patch sizes. We used patch size to observe this manifestation of the competition‐colonisation trade‐off over 20° of latitude. The trade‐off was more readily observed at lower latitudes and was proportional to the ‘ecological age’ of communities (i.e. the degree of resource acquisition and likelihood of species interactions). Results suggest that ecological age may mediate the prominence of stochastic or deterministic coexistence mechanisms and will depend on the rate of ecological processes.  相似文献   

15.
EG Murrell  SA Juliano 《PloS one》2012,7(9):e43458
Resource competition theory predicts that R*, the equilibrium resource amount yielding zero growth of a consumer population, should predict species' competitive abilities for that resource. This concept has been supported for unicellular organisms, but has not been well-tested for metazoans, probably due to the difficulty of raising experimental populations to equilibrium and measuring population growth rates for species with long or complex life cycles. We developed an index (R(index)) of R* based on demography of one insect cohort, growing from egg to adult in a non-equilibrium setting, and tested whether R(index) yielded accurate predictions of competitive abilities using mosquitoes as a model system. We estimated finite rate of increase (λ') from demographic data for cohorts of three mosquito species raised with different detritus amounts, and estimated each species' R(index) using nonlinear regressions of λ' vs. initial detritus amount. All three species' R(index) differed significantly, and accurately predicted competitive hierarchy of the species determined in simultaneous pairwise competition experiments. Our R(index) could provide estimates and rigorous statistical comparisons of competitive ability for organisms for which typical chemostat methods and equilibrium population conditions are impractical.  相似文献   

16.
While non-spatial models predict that like species cannot stably coexist, empirical studies suggest that similar species have similar distributions due to shared habitat requirements. A model is developed to discuss competition and coexistence in subdivided but locally stable habitats. The model predicts that in some cases it is possible for one species to exclude the other species from a geographic region, while in other cases two competing species can stably coexist. The equilibrium level and the fraction of doubly occupied patches, if there is coexistence, are determined by the strength of competition on colonization and exclusion in such a system. Also, it is possible for two ecologically identical species to stably coexist, and two asymmetrically competing species can coexist when there is a trade-off between local competition ability and invasion ability. When rescue effects are considered, the stable region at internal equilibrium point would be reduced, but the fraction of doubly occupied patches would be enlarged.  相似文献   

17.
Models of metapopulations have often ignored local community dynamics and spatial heterogeneity among patches. However, persistence of a community as a whole depends both on the local interactions and the rates of dispersal between patches. We study a mathematical model of a metacommunity with two consumers exploiting a resource in a habitat of two different patches. They are the exploitative competitors or the competing predators indirectly competing through depletion of the shared resource. We show that they can potentially coexist, even if one species is sufficiently inferior to be driven extinct in both patches in isolation, when these patches are connected through diffusive dispersal. Thus, dispersal can mediate coexistence of competitors, even if both patches are local sinks for one species because of the interactions with the other species. The spatial asynchrony and the competition-colonization trade-off are usual mechanisms to facilitate regional coexistence. However, in our case, two consumers can coexist either in synchronous oscillation between patches or in equilibrium. The higher dispersal rate of the superior prompts rather than suppresses the inferior. Since differences in the carrying capacity between two patches generate flows from the more productive patch to the less productive, loss of the superior by emigration relaxes competition in the former, and depletion of the resource by subsidized consumers decouples the local community in the latter.  相似文献   

18.
Patch occupancy theory predicts that a trade-off between competition and dispersal should lead to regional coexistence of competing species. Empirical investigations, however, find local coexistence of superior and inferior competitors, an outcome that cannot be explained within the patch occupancy framework because of the decoupling of local and spatial dynamics. We develop two-patch metapopulation models that explicitly consider the interaction between competition and dispersal. We show that a dispersal-competition trade-off can lead to local coexistence provided the inferior competitor is superior at colonizing empty patches as well as immigrating among occupied patches. Immigration from patches that the superior competitor cannot colonize rescues the inferior competitor from extinction in patches that both species colonize. Too much immigration, however, can be detrimental to coexistence. When competitive asymmetry between species is high, local coexistence is possible only if the dispersal rate of the inferior competitor occurs below a critical threshold. If competing species have comparable colonization abilities and the environment is otherwise spatially homogeneous, a superior ability to immigrate among occupied patches cannot prevent exclusion of the inferior competitor. If, however, biotic or abiotic factors create spatial heterogeneity in competitive rankings across the landscape, local coexistence can occur even in the absence of a dispersal-competition trade-off. In fact, coexistence requires that the dispersal rate of the overall inferior competitor not exceed a critical threshold. Explicit consideration of how dispersal modifies local competitive interactions shifts the focus from the patch occupancy approach with its emphasis on extinction-colonization dynamics to the realm of source-sink dynamics. The key to coexistence in this framework is spatial variance in fitness. Unlike in the patch occupancy framework, high rates of dispersal can undermine coexistence, and hence diversity, by reducing spatial variance in fitness.  相似文献   

19.
Investigations of competitive interactions emphasize non-detrital resources, even though detritus is a major component of most food webs. Studies of competing species focus usually on single resource types, although consumers in nature are likely to encounter mixtures of resource types that may affect whether competition results in exclusion or coexistence. The invasive mosquito Aedes albopictus is capable of excluding the native mosquito Ochlerotatus triseriatus in competition for single detritus types in laboratory and field microcosms. In this study, we used nine ratios of two detritus types (animal and leaf) common in natural containers to test whether detritus ratios affect the outcome of competition. Under intraspecific and interspecific competition, A. albopictus attained higher survival and estimated population growth rate than did O. triseriatus. Unlike past studies, both species had positive growth and high adult survival, with little evidence of competitive effects, under one resource ratio (10:1 ratio of leaf : animal detritus) regardless of mosquito densities, suggesting potential coexistence. Path analysis showed that densities of larvae had negative effects on population growth for O. triseriatus but not for A. albopictus, indicating competitive superiority of A. albopictus. Population growth of both species was affected strongly by the direct paths from animal (positive) and leaf (negative) detritus, and the indirect effect of leaf detritus via bacterial production (positive). Field sampling established that detritus entered real tree holes in ratios similar to those in our experiment, suggesting that natural variation in detritus ratios may influence local coexistence of these species. Seasonal variation in ratios of plant and animal detritus indicated that temporal as well as spatial variation in inputs may be important for potential coexistence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号