首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Auxin signaling and regulated protein degradation   总被引:13,自引:0,他引:13  
  相似文献   

2.
3.
ER stress signaling by regulated proteolysis of ATF6   总被引:3,自引:0,他引:3  
  相似文献   

4.
5.
Site-2 proteases (S2Ps) form a large family of membrane-embedded metalloproteases that participate in cellular signaling pathways through sequential cleavage of membrane-tethered substrates. Using sequence similarity searches, we extend the S2P family to include remote homologs that help define a conserved structural core consisting of three predicted transmembrane helices with traditional metalloprotease functional motifs and a previously unrecognized motif (GxxxN/S/G). S2P relatives were identified in genomes from Bacteria, Archaea, and Eukaryota including protists, plants, fungi, and animals. The diverse S2P homologs divide into several groups that differ in various inserted domains and transmembrane helices. Mammalian S2P proteases belong to the major ubiquitous group and contain a PDZ domain. Sequence and structural analysis of the PDZ domain support its mediating the sequential cleavage of membrane-tethered substrates. Finally, conserved genomic neighborhoods of S2P homologs allow functional predictions for PDZ-containing transmembrane proteases in extra-cytoplasmic stress response and lipid metabolism.  相似文献   

6.
Megalin, a member of the low density lipoprotein receptor gene family, is required for efficient protein absorption in the proximal tubule. Recent studies have shown that the low density lipoprotein receptor-related protein, another member of this gene family, is proteolytically processed by gamma-secretase implying a role for low density lipoprotein receptor-related protein in a Notchlike signaling pathway. This pathway has been shown to involve: 1) metalloprotease-mediated ectodomain shedding and gamma-secretase-mediated intramembrane proteolysis of some receptors. Experiments were performed to determine whether megalin undergoes similar processing. By immunocytochemistry, immunoblotting, and a fluorogenic enzyme assay presenilin-1 (required for gamma-secretase activity) and gamma-secretase activity were found in the brush border of proximal kidney tubules where megalin is localized. Using a fluorogenic peptide containing an amyloid precursor protein gamma-secretase cleavage site and Compound E, a specific gamma-secretase inhibitor, we found high levels of gamma-secretase activity in renal brush border membrane vesicles. Immunoblotting analysis of renal microsomes and opossum kidney proximal tubule (OKP) cells using antibodies directed to the cytosolic domain of megalin showed a 35-40-kDa, membrane-associated, carboxyl-terminal fragment of megalin (MCTF). When cells were incubated with 200 nm phorbol 12-myristate 13-acetate, the appearance of the MCTF increased 2.5-fold and was blocked by metalloprotease inhibitors. When the cells were incubated with gamma-secretase inhibitor Compound E, it caused a 2-fold increase in MCTF. Finally, incubating the cells with 1 microm vitamin D-binding protein resulted in a 25% increase in the appearance of the MCTF. In summary, the MCTF is produced by protein kinase C regulated, metalloprotease-mediated ectodomain shedding and is the substrate for gamma-secretase. We postulate that the enzymatic processing of megalin represents part of a novel ligand-dependent signaling pathway in the proximal tubule that links receptor-mediated endocytosis with cell signaling.  相似文献   

7.
Monoclonal antibody AFRC MAC 203 recognizes a developmentally regulated lipopolysaccharide antigen in Rhizobium leguminosarum bv. viciae 3841. Transposon-induced mutants that constitutively expressed MAC 203 antigen were isolated. These strains were morphologically normal, showed no gross abnormalities in lipopolysaccharide size distribution on sodium dodecyl sulfate-polyacrylamide gels, and induced normal nitrogen-fixing nodules. However, the mutants lacked lipopolysaccharide epitopes recognized by another rat monoclonal antibody, AFRC MAC 281, suggesting that the corresponding epitopes may be interconverted or share a common precursor. In conjugational crosses, the transposon insertion associated with both the loss of MAC 281 antigen and the constitutive expression of MAC 203 antigen showed linkage to the chromosomal rif allele. A derivative of strain 3841 with a deletion spanning the nod-fix region of the symbiotic plasmid showed no altered expression pattern for MAC 203 antigen, suggesting that the relevant genetic determinants map to genomic sites that are not associated with nifA or any known genes on the symbiotic plasmid.  相似文献   

8.
Auxin induction of cell cycle regulated activity of tobacco telomerase.   总被引:5,自引:0,他引:5  
Telomerase activity was measured at each phase of the cell cycle in synchronized tobacco (Nicotiana tabacum) BY-2 cells in suspension culture with the use of the telomeric repeat amplification protocol assay. The activity was low or undetectable at most phases of the cell cycle but showed a marked increase at early S phase. The induction of telomerase activity was not affected by the S phase blockers aphidicolin (which inhibits DNA polymerase alpha) or hydroxyurea (which inhibits ribonucleotide reductase), but it was prevented by olomoucine, an inhibitor of Cdc2/Cdk2 kinases that blocks G(1)-S cell cycle transition. These results suggest that the induction of telomerase activity is not directly coupled to DNA replication by conventional DNA polymerases, but rather is triggered by the entry of cells into S phase. Various analogs of the plant hormone auxin, including indole-3-acetic acid, alpha-naphthaleneacetic acid, and 2,4-dichlorophenoxyacetic acid, potentiated the increase in telomerase activity at early S phase; the growth-inactive analog 2,3-dichlorophenoxyacetic acid, however, had no such effect. Potentiation by indole-3-acetic acid of the induction of telomerase activity was dose dependent. Together, these data indicate that telomerase activity in tobacco cells is regulated in a cell cycle-dependent manner, and that the increase in activity at S phase is specifically inducible by auxin.  相似文献   

9.
Proliferating cells need to synthesize large amounts of histones to rapidly package nascent DNA into nucleosomes. This is a challenging task for cells because changes in rates of DNA synthesis lead to an accumulation of excess histones, which interfere with many aspects of DNA metabolism. In addition, cells need to ensure that histone variants are incorporated at the correct chromosomal location. Recent discoveries have highlighted the importance of regulated histone proteolysis in preventing both the accumulation of excess histones and the mis-incorporation of histone variants at inappropriate loci.  相似文献   

10.
Controlled proteolysis underlies a vast diversity of protective and regulatory processes that are of key importance to cell fate. The unique molecular architecture of the widely conserved high temperature requirement A (HTRA) proteases has evolved to mediate critical aspects of ATP-independent protein quality control. The simple combination of a classic Ser protease domain and a carboxy-terminal peptide-binding domain produces cellular factors of remarkable structural and functional plasticity that allow cells to rapidly respond to the presence of misfolded or mislocalized polypeptides.  相似文献   

11.
12.
We previously reported that exogenous application of auxin to Arabidopsis seedlings resulted in downregulation of indole-3-acetic acid (IAA) biosynthesis genes in a feedback manner. In this study, we investigated the involvement of the SCFTIR1/AFB-mediated signaling pathway in feedback regulation of the indole-3-pyruvic acid-mediated auxin biosynthesis pathway in Arabidopsis. Application of PEO-IAA, an inhibitor of the IAA signal transduction pathway, to wild-type seedlings resulted in increased endogenous IAA levels in roots. Endogenous IAA levels in the auxin-signaling mutants axr2-1, axr3-3, and tir1-1afb1-1afb2-1afb3-1 also increased. Furthermore, YUCCA (YUC) gene expression was repressed in response to auxin treatment, and expression of YUC7 and YUC8 increased in response to PEO-IAA treatment. YUC genes were also induced in auxin-signaling mutants but repressed in TIR1-overexpression lines. These observations suggest that the endogenous IAA levels are regulated by auxin biosynthesis in a feedback manner, and the Aux/IAA and SCFTIR1/AFB-mediated auxin-signaling pathway regulates the expression of YUC genes.  相似文献   

13.
Recent findings show that cilia are sensory organelles that display specific receptors and ion channels, which transmit signals from the extracellular environment via the cilium to the cell to control tissue homeostasis and function. Agenesis of primary cilia or mislocation of ciliary signal components affects human pathologies, such as polycystic kidney disease and disorders associated with Bardet-Biedl syndrome. Primary cilia are essential for hedgehog ligand-induced signaling cascade regulating growth and patterning. Here, we show that the primary cilium in fibroblasts plays a critical role in growth control via platelet-derived growth factor receptor alpha (PDGFRalpha), which localizes to the primary cilium during growth arrest in NIH3T3 cells and primary cultures of mouse embryonic fibroblasts. Ligand-dependent activation of PDGFRalphaalpha is followed by activation of Akt and the Mek1/2-Erk1/2 pathways, with Mek1/2 being phosphorylated within the cilium and at the basal body. Fibroblasts derived from Tg737(orpk) mutants fail to form normal cilia and to upregulate the level of PDGFRalpha; PDGF-AA fails to activate PDGFRalphaalpha and the Mek1/2-Erk1/2 pathway. Signaling through PDGFRbeta, which localizes to the plasma membrane, is maintained at comparable levels in wild-type and mutant cells. We propose that ciliary PDGFRalphaalpha signaling is linked to tissue homeostasis and to mitogenic signaling pathways.  相似文献   

14.
Glenn G  van der Geer P 《FEBS letters》2008,582(6):911-915
The CSF-1 receptor is a protein-tyrosine kinase that regulates the renewal, differentiation and activation of monocytes and macrophages. We have recently shown that the CSF-1 receptor undergoes regulated intramembrane proteolysis, or RIPping. Here, we report that RIPping can be observed in response to pathogen-associated molecules, which act through Toll-like receptors (TLRs). TLR-induced CSF-1 receptor RIPping is largely independent of protein kinase C, while maximal RIPping depends on Erk activation. Our studies show that CSF-1 receptor RIPping can be activated by various intracellular signal transduction pathways and that RIPping is likely to play an important role during macrophage activation.  相似文献   

15.
16.
It is often the case in biology that research into breaking things down lags behind research into synthesizing them, and this is certainly true for intracellular proteolysis. Now that we recognize that intracellular proteolysis, triggered by attaching multiple copies of a small protein called ubiquitin to target proteins, is fundamental to life, it is hard to believe that 20 years ago this field was little more than a backwater of biochemistry studied by a handful of laboratories. Among the few were Avram Hershko, Aaron Ciechanover and Alexander Varshavsky, who were recently awarded the Albert Lasker award for basic medical research for discovering the importance of protein degradation in cellular physiology. This Timeline traces how they and their collaborators triggered the rapid movement of ubiquitin-mediated proteolysis to centre stage.  相似文献   

17.
18.
How the cyclin became a cyclin: regulated proteolysis in the cell cycle.   总被引:48,自引:0,他引:48  
D M Koepp  J W Harper  S J Elledge 《Cell》1999,97(4):431-434
  相似文献   

19.
20.
The guillotine thermocouple psychrometer allows auxin action on cell enlargement to be investigated in intact plants. Because the technique measures all the physical parameters affecting enlargement in the same plants, close comparisons can be made of the changes brought about by this growth regulator. In etiolated seedlings of soybean (Glycine max L. Merr.), auxin was supplied endogenously by the intact plant or was depleted by removing the apical portion of the stem. We observed that, when stem growth was rapid in the intact plant, the water potential of the growing region was lower than in the nongrowing region but, as growth slowed during auxin depletion, the water potential rose until it became essentially the same as in the nongrowing region. This indicated that gradients in water potential had been induced by the demand for water during rapid growth but had decreased as growth decreased in the auxin-depleted cells. The turgor appeared to rise slightly as growth slowed which is in the wrong direction to account for the growth change unless compensating changes occurred in wall properties and/or synthesis. As growth ceased in the auxin-depleted tissue, the threshold turgor rose until it became nearly the same as the cell turgor, which indicates that auxin affected this wall parameter. The osmotic potential increased slightly, probably because of a dilution of the cell contents by the residual growth occurring after the stem apex (and cotyledons) had been removed. The hydraulic conductance for water was unaffected by auxin status whether it was measured in the whole enlarging region or in individual cortical cells from the region. It was concluded that auxin acts mainly on the metabolism of the cell walls manifested by the change in growth rate and threshold turgor. The other changes were passive responses to the changed growth rate.Abbreviations and Symbols G relative growth rate - L conductance of tissue - Lp hydraulic conductivity of cell - m extensibility of cell walls - T threshold turgor - t1/2 halftime for turgor relaxation - V volume of water - bulk elastic modulus - o water potential of nongrowing tissue - (o w) growth-induced water potential - p turgor - (p T) growth-active turgor - s osmotic potential - w water potential of growing tissue This work was supported by a grant from the Science and Technology Agency of Japan to S.M. and grants from the DuPont Company and the Department of Energy DE-FG02-87ER13776 to J.S.B. We thank Dr. Douglas Miller for help with the statistics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号