首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The time-resolved fluorescence polarization anisotropy signal has been measured from fluorescent-labeled myosin cross-bridges in single glycerinated muscle fibers in the relaxed and rigor states. In one experimental configuration, the polarization of the excitation light and the fiber axis are aligned, and the anisotropy is sensitive to rotational motions of the probes about axes other than the fiber axis. The rotational correlation times are approximately 1000 ns for relaxed fibers and greater than 7000 ns for rigor fibers. In another experimental configuration, the excitation light polarization is perpendicular to the fiber axis, and its propagation vector has a component parallel to the fiber axis so that the anisotropy is sensitive to probe rotational motion about different axes, including the fiber axis. In this configuration, the rotational correlation times are approximately 300 ns for both relaxed and rigor fibers. The theory of rotational diffusion in a potential described in a related paper [Burghardt, T.P. (1985) Biophys. J. (in press)] is applied to the relaxed fiber data.  相似文献   

2.
The contractile properties of rabbit skinned muscle fibers were studied at 1-2 degrees C in different concentrations of MgATP and MgADP. Double-reciprocal plots of maximum velocity against MgATP concentration at different MgADP concentrations all extrapolated to the same value. This finding suggests that MgATP and MgADP compete for the same site on the cross-bridge, and that the exchange of MgATP for MgADP occurs without a detectable step intervening. The K(m) for ATP was 0.32 mM. The K(i) for MgADP was 0.33 mM. Control experiments suggested that the tortuosity of diffusion paths within the fibers reduced the radial diffusion coefficients for reactants about sixfold. Increasing MgADP from 0.18 to 2 mM at 5 mM ATP or lowering MgATP from 10 to 2 mM at 0.18 mM MgADP, respectively, increased isometric force by 25% and 23%, increased stiffness by 10% and 20%, and decreased maximum velocity by 35% and 31%. Two mechanisms appeared to be responsible. One detained bridges in high-force states, where they recovered from a length step with a slower time course. The other increased the fraction of attached bridges without altering the kinetics of their responses, possibly by an increased activation resulting from cooperative effects of the detained, high-force bridges. The rigor bridge was more effective than the ADP-bound bridge in increasing the number of attached bridges with unaltered kinetics.  相似文献   

3.
The ability to measure properties of a single cross-bridge in working muscle is important because it avoids averaging the signal from a large number of molecules and because it probes cross-bridges in their native crowded environment. Because the concentration of myosin in muscle is large, observing the kinetics of a single myosin molecule requires that the signal be collected from small volumes. The introduction of small observational volumes defined by diffraction-limited laser beams and confocal detection has made it possible to limit the observational volume to a femtoliter (10(-15) liter). By restraining labeling to 1 fluorophore per 100 myosin molecules, we were able to follow the kinetics of approximately 400 cross-bridges. To reduce this number further, we used two-photon (2P) microscopy. The focal plane in which the laser power density was high enough to produce 2P absorption was thinner than in confocal microscopy. Using 2P microscopy, we were able to observe approximately 200 cross-bridges during contraction. The novel method of confocal total internal reflection (CTIR) provides a method to reduce the observational volume even further, to approximately 1 attoliter (10(-18) liter), and to measure fluorescence with a high signal-to-noise (S/N) ratio. In this method, the observational volume is made shallow by illuminating the sample with an evanescent field produced by total internal reflection (TIR) of the incident laser beam. To guarantee the small lateral dimensions of the observational volume, a confocal aperture is inserted in the conjugate-image plane of the objective. With a 3.5-mum confocal aperture, we achieved a volume of 1.5 attoliter. Association-dissociation of the myosin head was probed with rhodamine attached at cys707 of the heavy chain of myosin. Signal was contributed by one to five fluorescent myosin molecules. Fluorescence decayed in a series of discrete steps, corresponding to bleaching of individual molecules of rhodamine. The S/N ratio was sufficiently large to make statistically significant comparisons from rigor and contracting myofibrils.  相似文献   

4.
Thermoelastic properties of cross-bridges were measured by application of small sinusoidal length perfurbations and submillisecond Joulean temperature jump to chemically skinned muscle fibre removed from rigor solution. The thermal expansion coefficient of fibres was 4.2 +/- 1.0 X 10(-5) K-1. We have observed neither rubber-like stiffness increase, nor tension increase and stiffness decrease (which are expected if alpha-coil melting occurs) after temperature jump.  相似文献   

5.
Skeletal muscle fibers of the frog Rana temporaria were held just taut and stimulated transversely by unidirectional electrical fields. We observed the reversible effects of stimulus duration (0.1-100 ms) and strength on action potentials, intracellular Ca2+ transients (monitored by aequorin), and contractile force during fixed-end contractions. Long duration stimuli (e.g., 10 ms) induced a maintained depolarization on the cathodal side of a cell and a maintained hyperpolarization on its anodal side. The hyperpolarization of the side facing the anode prevented the action potential from reaching mechanical threshold during strong stimuli. Variation of the duration or strength of a stimulus changed the luminescent response from a fiber injected with aequorin. Thus, the intracellular Ca2+ released during excitation-contraction coupling could be changed by the stimulus parameters. Prolongation of a stimulus at field strengths above 1.1 x rheobase decreased the amplitude of aequorin signals and the force of contractions. The decreases in aequorin and force signals from a given fiber paralleled one another and depended on the stimulus strength, but not on the stimulus polarity. These changes were completely reversible for stimulus strengths up to at least 4.2 x rheobase. The graded decreases in membrane depolarization, aequorin signals, and contractile force were correlated with the previously described folding of myofibrils in fibers allowed to shorten in response to the application of a long duration stimulus. The changes in aequorin signals and force suggest an absence of myofilament activation by Ca2+ in the section of the fiber closest to the anode. The results imply that injected aequorin distributes circumferentially in frog muscle with a coefficient of at least 10(-7) cm2/s, which is not remarkably different from the previously measured coefficient of 5 x 10(-8) cm2/s for its diffusion lengthwise.  相似文献   

6.
Stiffness and force in activated frog skeletal muscle fibers.   总被引:2,自引:3,他引:2       下载免费PDF全文
Single fibers, isolated intact from frog skeletal muscles, were held firmly very near to each end by stiff metal clasps fastened to the tendons. The fibers were then placed horizontally between two steel hooks inserted in eyelets of the tendon clasps. One hook was attached to a capacitance gauge force transducer (resonance frequency up to approximately 50 kHz) and the other was attached to a moving-coil length changer. This allowed us to impose small, rapid releases (complete in less than 0.15 ms) and high frequency oscillations (up to 13 kHz) to one end of a resting or contracting fiber and measure the consequences at the other end with fast time resolution at 4 to 6 degrees C. The stiffness of short fibers (1.8-2.6 mm) was determined directly from the ratio of force to length variations produced by the length changer. The resonance frequency of short fibers was so high (approximately 40 kHz) that intrinsic oscillations were not detectably excited. The stiffness of long fibers, on the other hand, was calculated from measurement of the mechanical resonance frequency of a fiber. Using both short and long fibers, we measured the sinusoids of force at one end of a contracting fiber that were produced by relatively small sinusoidal length changes at the other end. The amplitudes of the sinusoidal length changes were small compared with the size of step changes that produce nonlinear force-extension relations. The sinusoids of force from long fibers changed amplitude and shifted phase with changes in oscillation frequency in a manner expected of a transmission line composed of mass, compliance, and viscosity, similar to that modelled by (Ford, L. E., A. F. Huxley, and R. M. Simmons, 1981, J. Physiol. (Lond.), 311:219-249). A rapid release during the plateau of tetanic tension in short fibers caused a fall in force and stiffness, a relative change in stiffness that putatively was much smaller than that of force. Our results are, for the most part, consistent with the cross-bridge model of force generation proposed by Huxley, A. F., and R. M. Simmons (1971, Nature (Lond.), 213:533-538). However, stiffness in short fibers developed markedly faster than force during the tetanus rise. Thus our findings show the presence of one or more noteworthy cross-bridge states at the onset and during the rise of active tension towards a plateau in that attachment apparently is followed by a relatively long delay before force generation occurs.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Bed rest increases the amount of mismatched fibers in human skeletal muscle   总被引:6,自引:0,他引:6  
The effects of a37-day period of bed rest on myosin heavy chain (MHC) expression onboth mRNA and protein level in human skeletal muscle fibers werestudied. Muscle biopsies from vastus lateralis muscle were obtainedfrom seven healthy young male subjects before and after the bed-restperiod. Combined in situ hybridization, immunocytochemistry, and ATPasehistochemistry analysis of serial sections of the muscle biopsiesdemonstrated that fibers showing a mismatch between MHC isoforms at themRNA and protein level increased significantly after the bed-restperiod, suggesting an increase in the amount of muscle fibers in atransitional state. Accordingly, fibers showing a match in expressionof MHC-1 and of MHC-2A at the mRNA and protein level decreased, whereasfibers showing a match between MHC-2X mRNA and protein increased after bed rest. Overall, there was an increase in fibers in a transitional state from phenotypic type 1  2A and 2A  2X.Furthermore, a number of fibers with unusual MHC mRNA and isoproteincombinations were observed after bed rest (e.g., type 1 fibers withonly mRNA for 2X and type 1 fibers negative for mRNA for MHC-/slow,2A, and 2X). In contrast, no changes were revealed after an examination at the protein level alone. These data suggest that the reduced load-bearing activity imposed on the skeletal muscles through bed restwill alter MHC gene expression, resulting in combinations of mRNA andMHC isoforms normally not (or only rarely) observed in musclessubjected to load-bearing activity. On the other hand, the present dataalso show that 37 days of bed rest are not a sufficient stimulus toinduce a similar change at the protein level, as was observed at thegene level.  相似文献   

8.
Weakly attached cross-bridges in relaxed frog muscle fibers.   总被引:1,自引:1,他引:0       下载免费PDF全文
Tension responses due to small, rapid length changes (completed within 40 microseconds) were obtained from skinned single frog muscle fiber segments (4-10 mm length) incubated in relaxing and rigor solutions at various ionic strengths. The first 2 ms of these responses can be described with a linear model in which the fiber is regarded as a rod, composed of infinitesimally small, identical segments, containing one undamped elastic element and two or three damped elastic elements and a mass in series. Rigor stiffness changed less than 10% in a limited range, 40-160 mM, of ionic strength conditions. Equatorial x-ray diffraction patterns show a similar finding for the filament spacing and intensity ratio I(11)/I(10). Relaxed fibers became stiffer under low ionic strength conditions. This stiffness increment can be correlated with a decreasing filament spacing and (an increased number of) weakly attached cross-bridges. Under low ionic strength conditions an additional recovery (1 ms time constant) became noticeable which might reflect characteristics of weakly attached cross-bridges.  相似文献   

9.
Two-dimensional x-ray diffraction was used to investigate structural features of cross-bridges that generate force in isometrically contracting skeletal muscle. Diffraction patterns were recorded from arrays of single, chemically skinned rabbit psoas muscle fibers during isometric force generation, under relaxation, and in rigor. In isometric contraction, a rather prominent intensification of the actin layer lines at 5.9 and 5.1 nm and of the first actin layer line at 37 nm was found compared with those under relaxing conditions. Surprisingly, during isometric contraction, the intensity profile of the 5.9-nm actin layer line was shifted toward the meridian, but the resulting intensity profile was different from that observed in rigor. We particularly addressed the question whether the differences seen between rigor and active contraction might be due to a rigor-like configuration of both myosin heads in the absence of nucleotide (rigor), whereas during active contraction only one head of each myosin molecule is in a rigor-like configuration and the second head is weakly bound. To investigate this question, we created different mixtures of weak binding myosin heads and rigor-like actomyosin complexes by titrating MgATPgammaS at saturating [Ca2+] into arrays of single muscle fibers. The resulting diffraction patterns were different in several respects from patterns recorded under isometric contraction, particularly in the intensity distribution along the 5.9-nm actin layer line. This result indicates that cross-bridges present during isometric force generation are not simply a mixture of weakly bound and single-headed rigor-like complexes but are rather distinctly different from the rigor-like cross-bridge. Experiments with myosin-S1 and truncated S1 (motor domain) support the idea that for a force generating cross-bridge, disorder due to elastic distortion might involve a larger part of the myosin head than for a nucleotide free, rigor cross-bridge.  相似文献   

10.
M Xiao  J Borejdo 《Biophysical journal》1997,72(5):2268-2274
Cis-parinaric acid (PA) binds to a hydrophobic pocket formed between the heavy chain of myosin subfragment-1 (S1) and the 41-residue N-terminal of essential light chain 1 (A1). The binding is strong (Ka = 5.6 x 10(7) M-1) and rigid (polarization = 0.334). PA does not bind to myofibrils in which A1 has been extracted or replaced with alkali light chain 2 (A2). As in the case of S1 labeled with other probes, polarization of fluorescence of S1-PA added to myofibrils depended on fractional saturation of actin filament with S1, i.e., on whether the filaments were fully or partially saturated with myosin heads. Because fluorescence quantum yield of PA is enhanced manyfold upon binding, and because PA binds weakly to myofibrillar structures other then A1, the dye is a convenient probe of cross-bridge orientation in native muscle fibers. The polarization of a fiber irrigated with PA was equal to the polarization of S1-PA added to fibers at nonsaturating concentration. Cross-linking of S1 added to fibers at nonsaturating concentration showed that each S1 bound to two actin monomers of a thin filament. These results suggest that in rigor rabbit psoas muscle fiber each myosin cross-bridge binds to two actins.  相似文献   

11.
Structural changes of contractile proteins were examined by millisecond time-resolved two-dimensional x-ray diffraction recordings during relaxation of skinned skeletal muscle fibers from rigor after caged ATP photolysis. It is known that the initial dissociation of the rigor actomyosin complex is followed by a period of transient active contraction, which is markedly prolonged in the presence of ADP by a mechanism yet to be clarified. Both single-headed (overstretched muscle fibers with exogenous myosin subfragment-1) and two-headed (fibers with full filament overlap) preparations were used. Analyses of various actin-based layer line reflections from both specimens showed the following: 1), The dissociation of the rigor actomyosin complex was fast and only modestly decelerated by ADP and occurred in a single exponential manner without passing through any detectable transitory state. Its ADP sensitivity was greater in the two-headed preparation but fell short of explaining the large ADP effect on the transient active contraction. 2), The decay of the activated state of the thin filament followed the time course of tension more closely in an ADP-dependent manner. These results suggest that the interplay between the reattached active myosin heads and the thin filament is responsible for the prolonged active contraction in the presence of ADP.  相似文献   

12.
We applied fluorescence lifetime imaging microscopy to map the microenvironment of the myosin essential light chain (ELC) in permeabilized skeletal muscle fibers. Four ELC mutants containing a single cysteine residue at different positions in the C-terminal half of the protein (ELC-127, ELC-142, ELC-160, and ELC-180) were generated by site-directed mutagenesis, labeled with 7-diethylamino-3-((((2-iodoacetamido)ethyl)amino)carbonyl)coumarin, and introduced into permeabilized rabbit psoas fibers. Binding to the myosin heavy chain was associated with a large conformational change in the ELC. When the fibers were moved from relaxation to rigor, the fluorescence lifetime increased for all label positions. However, when 1% stretch was applied to the rigor fibers, the lifetime decreased for ELC-127 and ELC-180 but did not change for ELC-142 and ELC-160. The differential change of fluorescence lifetime demonstrates the shift in position of the C-terminal domain of ELC with respect to the heavy chain and reveals specific locations in the lever arm region sensitive to the mechanical strain propagating from the actin-binding site to the lever arm.  相似文献   

13.
K Ajtai  T P Burghardt 《Biochemistry》1986,25(20):6203-6207
The fluorescence polarization from rhodamine labels specifically attached to the fast-reacting thiol of the myosin cross-bridge in glycerinated muscle fibers has been measured to determine the angular distribution of the cross-bridges in different physiological states of the fibers as a function of temperature. To investigate the fibers at temperatures below 0 degree C, we have added glycerol to the bathing solution as an anti-freezing agent. We find that the fluorescence polarization from the rhodamine probe detects distinct angular distributions of the cross-bridges in isometric-active, rigor, MgADP, and low ionic strength relaxed fibers at 4 degrees C. We also find that the rigor cross-bridges in the presence of glycerol can maintain at least two distinct orientations relative to the actin filament, one dominant at temperatures T greater than 2 degrees C and another dominant at T less than -10 degrees C. MgADP cross-bridges in the presence of glycerol maintain approximately the same orientation for all temperatures investigated. The rigor cross-bridge orientation at T less than -10 degrees C is similar to both the MgADP cross-bridge orientation in the presence of glycerol and the active muscle cross-bridge orientation at 4 degrees C. These findings show that the rigor cross-bridge in the presence of glycerol has at least two distinct orientations while attached to actin: one of them dominant at high temperature, the other dominant at low temperature or when MgADP is present. The latter orientation resembles that present in isometric-active fibers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Defining the organization of endocytic pathway in multinucleated skeletal myofibers is crucial to understand the routing of membrane proteins, such as receptors and glucose transporters, through this system. Here we analyzed the organization of the endocytic trafficking pathways in isolated rat myofibers. We found that sarcolemmal-coated pits and transferrin receptors were concentrated in the I band areas. Fluid phase markers were taken up into vesicles in the same areas along the whole length of the fibers and were then delivered into structures around and between the nuclei. These markers also accumulated beneath the neuromuscular and myotendinous junctions. The recycling compartment, labeled with transferrin, appeared as perinuclear and interfibrillar dots that partially colocalized with the GLUT4 compartment. Low-density lipoprotein, a marker of the lysosome-directed pathway, was transported into sparsely distributed perinuclear and interfibrillar dots that contacted microtubules. A majority of these dots did not colocalize with internalized transferrin, indicating that the recycling and the lysosome-directed pathways were distinct. In conclusion, the I band areas were active in endocytosis along the whole length of the multinucleated myofibers. The sorting endosomes distributed in a cross-striated fashion while the recycling and late endosomal compartments showed perinuclear and interfibrillar localizations and followed the course of microtubules.  相似文献   

15.
A new approach was used to study transient structural states of cross-bridges during activation of muscle fibers. Rabbit skinned muscle fibers were rapidly and synchronously activated from the rigor state by photolysis of caged ATP in the presence of Ca2+. At several different times during the switch from rigor to fully active tension development, the fibers were rapidly frozen on a liquid helium-cooled metal block, freeze-substituted, and examined in an electron microscope. The limits of structural preservation and resolution with this technique were analyzed. We demonstrate that the resolution of our images is sufficient to draw the following conclusions about cross-bridge structure. Rigor cross-bridges point away from the Z-line and most of them are wider near the thin filaments than near the backbone of the thick filaments. In contrast, cross-bridges in actively contracting fibers stretch between the thick and thin filaments at a variable angle, and are uniformly thin. Diffraction patterns computed from contracting muscle show layer lines both at 38 and 43 nm indicating that active cross-bridges contribute mass to both the actin- and myosin-based helical periodicities. The images obtained from fibers frozen 20 ms after release of ATP show a mixture of rigor and active type cross-bridge configurations. There is little evidence of cross-bridges with the rigor shape by 50 ms, and the difference in configurations between 50 and 300 ms after photolysis is surprisingly subtle.  相似文献   

16.
Inorganic phosphate (Pi) decreases the isometric tension of skinned skeletal muscle fibers, presumably by increasing the relative fraction of a low force quaternary complex of actin, myosin, ADP, and Pi (A.M.ADP.Pi). At the same time, Pi gives rise to a fast relaxing mechanical component as detected by oscillations at 500 Hz. To characterize the dynamic properties of this A.M.ADP.Pi complex, the effect of Pi on the tension response to stretch was investigated with rabbit psoas fibers. A ramp stretch applied in the presence of 20 mM Pi increased tension more than in the control solution (0 mM Pi) but reduced the fast relaxing component to the control level. Thus, a stretch seems to convert the low force, fast relaxing A.M.ADP.Pi complex to a high force, slow relaxing form. However, the Pi-induced enhancement of the tension response was not observed until the fibers were stretched more than 0.4% of their length, suggesting that a critical cross-bridge extension of approximately 4 nm is required for this conversion. The rate constant of the attachment/detachment of this low force complex was estimated from the velocity dependence of the enhancement. It was approximately 10 s-1, in marked contrast to the A.M.ADP.Pi complex under low salt, relaxed conditions (approximately 10,000 s-1). The enhancement of the tension response was not observed when isometric tension was reduced by lowering free calcium, implying that calcium and Pi affect different steps in the actomyosin ATPase cycle during contraction.  相似文献   

17.
Maximum velocity of the actomyosin ATPase reaction (V(max) ATPase) and ATP consumption rate during maximum isometric activation (ATP(iso)) were determined in human vastus lateralis (VL) muscle fibers expressing different myosin heavy chain (MHC) isoforms. We hypothesized that the reserve capacity for ATP consumption [1 -- (ratio of ATP(iso) to V(max) ATPase)] varies across VL muscle fibers expressing different MHC isoforms. Biopsies were obtained from 12 subjects (10 men and 2 women; age 21--66 yr). A quantitative histochemical procedure was used to measure V(max) ATPase. In permeabilized fibers, ATP(iso) was measured using an NADH-linked fluorometric procedure. The reserve capacity for ATP consumption was lower for fibers coexpressing MHC(2X) and MHC(2A) compared with fibers singularly expressing MHC(2A) and MHC(slow) (39 vs. 52 and 56%, respectively). Tension cost (ratio of ATP(iso) to generated force) also varied with fiber type, being highest in fibers coexpressing MHC(2X) and MHC(2A). We conclude that fiber-type differences in the reserve capacity for ATP consumption and tension cost reflect functional differences such as susceptibility to fatigue.  相似文献   

18.
The effects of the applied stretch and MgADP binding on the structure of the actomyosin cross-bridges in rabbit and/or frog skeletal muscle fibers in the rigor state have been investigated with improved resolution by x-ray diffraction using synchrotron radiation. The results showed a remarkable structural similarity between cross-bridge states induced by stretch and MgADP binding. The intensities of the 14.4- and 7.2-nm meridional reflections increased by approximately 23 and 47%, respectively, when 1 mM MgADP was added to the rigor rabbit muscle fibers in the presence of ATP-depletion backup system and an inhibitor for muscle adenylate kinase or by approximately 33 and 17%, respectively, when rigor frog muscle was stretched by approximately 4.5% of the initial muscle length. In addition, both MgADP binding and stretch induced a small but genuine intensity decrease in the region close to the meridian of the 5.9-nm layer line while retaining the intensity profile of its outer portion. No appreciable influence was observed in the intensities of the higher order meridional reflections of the 14.4-nm repeat and the other actin-based reflections as well as the equatorial reflections, indicating a lack of detachment of cross-bridges in both cases. The changes in the axial spacings of the actin-based and the 14.4-nm-based reflections were observed and associated with the tension change. These results indicate that stretch and ADP binding mediate similar structural changes, being in the correct direction to those expected for that the conformational changes are induced in the outer portion distant from the catalytic domain of attached cross-bridges. Modeling of conformational changes of the attached myosin head suggested a small but significant movement (about 10-20 degrees) in the light chain-binding domain of the head toward the M-line of the sarcomere. Both chemical (ADP binding) and mechanical (stretch) intervensions can reverse the contractile cycle by causing a backward movement of this domain of attached myosin heads in the rigor state.  相似文献   

19.
Calcium sparks in skeletal muscle fibers   总被引:3,自引:0,他引:3  
Baylor SM 《Cell calcium》2005,37(6):513-530
Ca(2+) sparks monitor transient local releases of Ca(2+) from the sarcoplasmic reticulum (SR) into the myoplasm. The release takes place through ryanodine receptors (RYRs), the Ca(2+)-release channels of the SR. In intact fibers from frog skeletal muscle, the temporal and spatial properties of voltage-activated Ca(2+) sparks are well simulated by a model that assumes that the Ca(2+) flux underlying a spark is 2.5 pA (units of Ca(2+) current) for 4.6 ms (18 degrees C). This flux amplitude suggests that 1-5 active RYRs participate in the generation of a typical voltage-activated spark under physiological conditions. A major goal of future experiments is to estimate this number more precisely and, if it is two or more, to investigate the communication mechanism that allows multiple RYRs to be co-activated in a rapid but self-limited fashion.  相似文献   

20.
To separate a fraction of the myosin cross-bridges that are attached to the thin filaments and that participate in the mechanical responses, muscle fibers were cross-linked with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide and then immersed in high-salt relaxing solution (HSRS) of 0.6 M ionic strength for detaching the unlinked myosin heads. The mechanical properties and force-generating ability of the cross-linked cross-bridges were tested with step length changes (L-steps) and temperature jumps (T-jumps) from 6-10 degrees C to 30-40 degrees C. After partial cross-linking, when instantaneous stiffness in HSRS was 25-40% of that in rigor, the mechanical behavior of the fibers was similar to that during active contraction. The kinetics of the T-jump-induced tension transients as well as the rate of the fast phase of tension recovery after length steps were close to those in unlinked fibers during activation. Under feedback force control, the T-jump initiated fiber shortening by up to 4 nm/half-sarcomere. Work produced by a cross-linked myosin head after the T-jump was up to 30 x 10(-21) J. When the extent of cross-linking was increased and fiber stiffness in HSRS approached that in rigor, the fibers lost their viscoelastic properties and ability to generate force with a rise in temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号