首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Root Formation in Ethylene-Insensitive Plants   总被引:2,自引:0,他引:2       下载免费PDF全文
Experiments with ethylene-insensitive tomato (Lycopersicon esculentum) and petunia (Petunia x hybrida) plants were conducted to determine if normal or adventitious root formation is affected by ethylene insensitivity. Ethylene-insensitive Never ripe (NR) tomato plants produced more below-ground root mass but fewer above-ground adventitious roots than wild-type Pearson plants. Applied auxin (indole-3-butyric acid) increased adventitious root formation on vegetative stem cuttings of wild-type plants but had little or no effect on rooting of NR plants. Reduced adventitious root formation was also observed in ethylene-insensitive transgenic petunia plants. Applied 1-aminocyclopropane-1-carboxylic acid increased adventitious root formation on vegetative stem cuttings from NR and wild-type plants, but NR cuttings produced fewer adventitious roots than wild-type cuttings. These data suggest that the promotive effect of auxin on adventitious rooting is influenced by ethylene responsiveness. Seedling root growth of tomato in response to mechanical impedance was also influenced by ethylene sensitivity. Ninety-six percent of wild-type seedlings germinated and grown on sand for 7 d grew normal roots into the medium, whereas 47% of NR seedlings displayed elongated tap-roots, shortened hypocotyls, and did not penetrate the medium. These data indicate that ethylene has a critical role in various responses of roots to environmental stimuli.  相似文献   

2.
M. M. Moloney  P. E. Pilet 《Planta》1981,153(5):447-452
Auxin binding onto membrane fractions of primary roots of maize seedlings has been demonstrated using naphth-1yl-acetic acid (NAA) and indol-3yl-acetic acid (IAA) as ligands. This binding is compared with the already well characterized interaction between auxins and coleoptile membranes. The results indicate that while kinetic parameters are of the same order for root and coleoptile binding, a number of differences occur with respect to location in cells and relative affinity. The possible significance of the existence of such binding sites in root cells is discussed in relation to auxin action.Abbreviations 4-Cl-PA 4-chlorophenoxyacetic acid - EDTA ethylene diamine tetracetic acid - IAA indol-3yl-acetic acid - MCPA 2-methyl-4-chlorophenoxyacetic acid - NAA naphth-1yl-acetic acid - 2-NAA naphth-2yl-acetic acid - Tris 2-amino-2-(hydroxymethyl) propane-1,3 diol - TIBA 2,3,5 triiodobenzoic acid - NPA naphthylphthalamic acid - PCIB 4-chlorophenoxyisobutyric acid - PCPP 4-chlorophenoxyisopropionic acid - 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   

3.
The hormonal regulation of adventitious root formation induced by flooding of the root system was investigated in the wetland species Rumex palustris Sm. Adventitious root development at the base of the shoot is an important adaptation to flooded conditions and takes place soon after the onset of flooding. Decreases in either endogenous auxin or ethylene concentrations induced by application of inhibitors of either auxin transport or ethylene biosynthesis reduced the number of adventitious roots formed by flooded plants, suggesting an involvement of these hormones in the rooting process. The rooting response during flooding was preceded by increased endogenous ethylene concentrations in the root system. The endogenous auxin concentration did not change during flooding-induced rooting, but a continuous basipetal transport of auxin from the shoot to the rooting zone appeared to be essential in maintaining stable auxin concentrations. These results suggest that the higher ethylene concentration in soil-flooded plants increases the sensitivity of the root-forming tissues to endogenous indoleacetic acid, thus initiating the formation of adventitious roots.  相似文献   

4.
We have previously shown that both endogenous auxin and ethylenepromote adventitious root formation in the hypocotyls of derootedsunflower (Helianthus annuus) seedlings. Experiments here showedthat promotive effects on rooting of the ethylene precursor,1-aminocyclopropane-l-carboxylic acid (ACC) and the ethylene-releasingcompound, ethephon (2-chloro-ethylphosphonic acid), dependedon the existence of cotyledons and apical bud (major sourcesof auxin) or the presence of exogenously applied indole-3-aceticacid (IAA). Ethephon, ACC, aminoethoxyvinylglycine (an inhibitorof ethylene biosynthesis), and silver thiosulphate (STS, aninhibitor of ethylene action), applied for a length of timethat significantly influenced adventitious rooting, showed noinhibitory effect on the basipetal transport of [3H]IAA. Theseregulators also had no effect on the metabolism of [3H]IAA andendogenous IAA levels measured by gas chromatography-mass spectrometry.ACC enhanced the rooting response of hypocotyls to exogenousIAA and decreased the inhibition of rooting by IAA transportinhibitor, N-1-naphthylphthalamic acid (NPA). STS reduced therooting response of hypocotyls to exogenous IAA and increasedthe inhibition of rooting by NPA. Exogenous auxins promotedethylene production in the rooting zone of the hypocotyls. Decapitationof the cuttings or application of NPA to the hypocotyl belowthe cotyledons did not alter ethylene production in the rootingzone, but greatly reduced the number of root primordia. We concludethat auxin is a primary controller of adventitious root formationin sunflower hypocotyls, while the effect of ethylene is mediatedby auxin. Key words: Auxin, ethylene, adventitious rooting, sunflower  相似文献   

5.
In this study we investigated the role of ethylene in the formation of lateral and adventitious roots in tomato ( Solanum lycopersicum ) using mutants isolated for altered ethylene signaling and fruit ripening. Mutations that block ethylene responses and delay ripening – Nr ( Never ripe ), gr ( green ripe ), nor ( non ripening ), and rin ( ripening inhibitor ) – have enhanced lateral root formation. In contrast, the epi ( epinastic ) mutant, which has elevated ethylene and constitutive ethylene signaling in some tissues, or treatment with the ethylene precursor 1-aminocyclopropane carboxylic acid (ACC), reduces lateral root formation. Treatment with ACC inhibits the initiation and elongation of lateral roots, except in the Nr genotype. Root basipetal and acropetal indole-3-acetic acid (IAA) transport increase with ACC treatments or in the epi mutant, while in the Nr mutant there is less auxin transport than in the wild type and transport is insensitive to ACC. In contrast, the process of adventitious root formation shows the opposite response to ethylene, with ACC treatment and the epi mutation increasing adventitious root formation and the Nr mutation reducing the number of adventitious roots. In hypocotyls, ACC treatment negatively regulated IAA transport while the Nr mutant showed increased IAA transport in hypocotyls. Ethylene significantly reduces free IAA content in roots, but only subtly changes free IAA content in tomato hypocotyls. These results indicate a negative role for ethylene in lateral root formation and a positive role in adventitious root formation with modulation of auxin transport as a central point of ethylene–auxin crosstalk.  相似文献   

6.
Adventitious rooting in Rumex plants, in which the root systems were in hypoxic conditions, differed considerably between two species. R. palustris, a species from frequently flooded river forelands, developed a large number of adventitious roots during hypoxia, whereas adventitious root formation was poor in R. thyrsiflorus, a species from seldom flooded dykes and river dunes. Adventitious rooting could also be evoked in aerated plants of both species by application of auxin (1-naphthaleneacetic acid or indoleacetic acid) to the leaves. The response to auxin was dose-dependent, but even high auxin doses could not stimulate R. thyrsiflorus to produce as many adventitious roots as R. palustris. Consequently, the difference between the species in the amount of adventitious root formation was probably genetically determined, and not a result of a different response to auxin. A prerequisite for hypoxia-induced adventitious root formation is the basipetal transport of auxin within the shoot, as specific inhibition of this transport by N-1-naphthylphthalamic acid severely decreased the number of roots in hypoxia-treated plants. It is suggested that hypoxia of the root system causes stagnation of auxin transport in the root system. This can lead to an accumulation of auxin at the base of the shoot rosette, resulting in adventitious root formation.  相似文献   

7.
White lupin (Lupinus albus L.) develops proteoid (cluster) rootsin response to phosphorus deficiency. Proteoid roots are composedof tight clusters of rootlets that initiate from the pericycleopposite protoxylem poles and emerge from every protoxylem polewithin the proteoid root axis. Auxins are required for lateralroot development, but little is known of their role in proteoidroot formation. Proteoid root numbers were dramatically increasedin P-sufficient (+P) plants by application of the syntheticauxin, naphthalene acetic acid (NAA), to leaves, and were reducedin P-deficient (-P) plants by the presence of auxin transportinhibitors [2,3,5-triiodobenzoic acid (TIBA) and naphthylphthalamicacid (NPA)]. While ethylene concentrations in the root zonewere 1.5-fold higher in -P plants, there was no effect on proteoidroot numbers of the ethylene inhibitors aminoethoxyvinvylglycine(AVG) and silver thiosulphate. Phosphonate, which interfereswith plant perception of internal P concentration, dramaticallyincreased the number of proteoid root segments in +P plants.Activities of phosphoenolpyruvate carboxylase (PEPC), malatedehydrogenase (MDH) and exuded acid phosphatase in proteoidroot segments were not different from +P controls when NAA wasapplied to +P lupin plants, but increased to levels comparableto -P plants in the phosphonate treatment. Addition of TIBAor NPA to -P plants reduced PEPC and MDH activity of -P proteoidroots to levels found in +P or -P normal root tissues, but didnot affect acid phosphatase in root exudates. These resultssuggest that auxin transport from the shoot plays a role inthe formation of proteoid roots during P deficiency. Auxin-stimulatedproteoid root formation is necessary, but not sufficient, tosignal the up-regulation of PEPC and MDH in proteoid root segments.In contrast, phosphonate applied to P-sufficient white lupinelicits the full suite of coordinated responses to P deficiencyCopyright2000 Annals of Botany Company Lupinus albus L., white lupin, proteoid roots, auxin, ethylene, phosphonate, phosphorus deficiency  相似文献   

8.
Development of adventitious roots (ARs) at the base of the shoot is an important adaptation of plants to waterlogging stress; however, its physiological mechanisms remain unclear. Here, we investigated the regulation of AR formation under waterlogged conditions by hormones and reactive oxygen species (ROS) in Cucumis sativus L., an agriculturally and economically important crop in China. We found that ethylene, auxin, and ROS accumulated in the waterlogged cucumber plants. On the other hand, application of the ethylene receptor inhibitor 1‐methylcyclopropene (1‐MCP), the auxin transport inhibitor 1‐naphthylphthalamic acid (NPA), or the NADPH oxidase inhibitor diphenyleneiodonium (DPI) decreased the number of ARs induced by waterlogging. Auxin enhanced the expression of ethylene biosynthesis genes, which led to ethylene entrapment in waterlogged plants. Both ethylene and auxin induced the generation of ROS. Auxin‐induced AR formation was inhibited by 1‐MCP, although ethylene‐induced AR formation was not inhibited by NPA. Both ethylene‐ and auxin‐induced AR formation were counteracted by DPI. These results indicate that auxin‐induced AR formation is dependent on ethylene, whereas ethylene‐induced AR formation is independent of auxin. They also show that ROS signals mediate both ethylene‐ and auxin‐induced AR formation in cucumber plants.  相似文献   

9.
This study investigated aerenchyma formation and function in adventitious roots of wheat (Triticum aestivum L.) when only a part of the root system was exposed to O2 deficiency. Two experimental systems were used: (1) plants in soil waterlogged at 200 mm below the surface; or (2) a nutrient solution system with only the apical region of a single root exposed to deoxygenated stagnant agar solution with the remainder of the root system in aerated nutrient solution. Porosity increased two‐ to three‐fold along the entire length of the adventitious roots that grew into the water‐saturated zone 200 mm below the soil surface, and also increased in roots that grew in the aerobic soil above the water‐saturated zone. Likewise, adventitious roots with only the tips growing into deoxygenated stagnant agar solution developed aerenchyma along the entire main axis. Measurements of radial O2 loss (ROL), taken using root‐sleeving O2 electrodes, showed this aerenchyma was functional in conducting O2. The ROL measured near tips of intact roots in deoxygenated stagnant agar solution, while the basal part of the root remained in aerated solution, was sustained when the atmosphere around the shoot was replaced by N2. This illustrates the importance of O2 diffusion into the basal regions of roots within an aerobic zone, and the subsequent longitudinal movement of O2 within the aerenchyma, to supply O2 to the tip growing in an O2 deficient zone.  相似文献   

10.
Previous research shows that gravity-sensing in flax (Linum usitatissimum) root is initiated during seed imbibition and precedes root emergence. In this study we investigated the developmental attenuation of flax root gravitropism post-germination and the involvement of ethylene. Gravity response deteriorated significantly from 3 to 11?h after root emergence, which occurred at around 19?h after imbibition (that is, from “age” 22 to 30?h). Although the root elongation rate increased from 22 to 30?h, the gravitropic curving rate declined steadily. Older roots were able to tolerate higher levels of exogenous IAA before inhibition of elongation and gravitropism occurred. The age-dependent effect of IAA on root growth and gravitropism suggests that young roots are more sensitive to auxin and respond to a smaller vertical auxin gradient than older roots upon horizontal gravistimulation. The ethylene synthesis inhibitor AVG (2-aminoethoxyvinyl glycine, 10?μM) or ethylene action inhibitor Ag+ (10?μM) stimulated gravitropic curvature of 30?h roots by 24 and 32%, respectively, but had no effect on 22?h roots, suggesting that as roots age, ethylene begins to play a role in root gravitropism. The auxin transport inhibitor NPA (N-naphthylphthalamic acid, 50?μM) reduced gravitropic curvature of 30?h roots by 24% but had no effect on 22?h roots. On the other hand, treating roots simultaneously with the auxin transport inhibitor and ethylene synthesis or action inhibitor stimulated gravitropic curvature of 30?h roots but not 22?h roots. Taken together, these data indicate that as roots develop, their weakened gravity response is due to decreased auxin sensitivity and possibly auxin transport regulated by ethylene.  相似文献   

11.
In this report, we demonstrate that sodium hydrosulfide (NaHS), a hydrogen sulfide (H2S) donor, promoted adventitious root formation mediated by auxin and nitric oxide (NO). Application of the H2S donor to seedling cuttings of sweet potato (Ipomoea batatas L.) promoted the number and length of adventltious roots in a dose-dependent manner. It was also verified that H2S or HS- rather than other sulfur-containing components derived from NariS could be attributed to the stimulation of adventitious root formation. A rapid Increase In endogenous H2S, indole acetic acid (IAA) and NO were sequentially observed in shoot tips of sweet potato seedlings treated with HallS. Further investigation showed that HzS-mediated root formation was alleviated by N-l-naphthylphthalamic acid (NPA), an IAA transport inhibitor, and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), an NO scavenger. Similar phenomena in H2S donor-dependent root organogenesis were observed in both excised willow (Sallx matsudana var. tortuosa Vilm) shoots and soybean (Glycine max L.) seedlings. These results indicated that the process of H2S-induced adventitious root formation was likely mediated by IAA and NO, and that H2S acts upstream of IAA and NO signal transduction pathways.  相似文献   

12.
The present report describes experiments in which the effects of growth in aerated and stagnant nutrient solutions on adventitious root porosities and patterns of radial O2 loss (ROL) from the roots of four genotypes of rice (Oryza sativa L.) were evaluated. The genotypes studied are usually cultivated in farming systems which differ markedly in their degree of soil waterlogging and flooding. Rice genotypes were found to differ in the constitutive porosity (% gas space) of their adventitious roots when grown in aerated solutions (lowest was 16%, highest was 30%), and the roots grown in stagnant conditions had porosities between 28% and 38%. ROL from the adventitious roots raised in aerated solution increased with distance behind the tip in three of the four genotypes; whereas for roots raised in stagnant solution, ROL decreased with distance behind the tip which is indicative of a high resistance to diffusion between the aerenchyma and external medium. For example, at 35 mm behind the root tip the ROL from roots of the 'deepwater' cultivar grown in stagnant conditions was 0.7% of the rate of its aerated roots, for the 'lowland' cultivar it was 5.6%, and for one of the 'upland' cultivars it was 43.6%. Thus, the barrier to ROL from the adventitious roots in three of the four genotypes was induced by growth in stagnant nutrient solution. A low rate of ROL from the basal zones of roots in an O2-free environment is of adaptative value since longitudinal diffusion of O2 to the root apex would be enhanced which, in turn, enables greater penetration of roots into anaerobic soils.  相似文献   

13.
Lin R  Wang H 《Plant physiology》2005,138(2):949-964
Light and auxin control many aspects of plant growth and development in an overlapping manner. We report here functional characterization of two closely related ABC (ATP-binding cassette) transporter genes, AtMDR1 and AtPGP1, in light and auxin responses. We showed that loss-of-function atmdr1 and atpgp1 mutants display hypersensitivity to far-red, red, and blue-light inhibition of hypocotyl elongation, reduced chlorophyll and anthocyanin accumulation, and abnormal expression of several light-responsive genes, including CAB3, RBCS, CHS, and PORA, under both darkness and far-red light conditions. In addition, we showed that the atmdr1-100 and atmdr1-100/atpgp1-100 mutants are defective in multiple aspects of root development, including increased root-growth sensitivity to 1-naphthalene acetic acid (1-NAA), and decreased sensitivity to naphthylphthalamic acid (NPA)-mediated inhibition of root elongation. Consistent with the proposed role of AtMDR1 in basipetal auxin transport, we found that expression of the auxin responsive DR5::GUS reporter gene in the central elongation zone is significantly reduced in the atmdr1-100 mutant roots treated with 1-NAA at the root tips, compared to similarly treated wild-type plants. Moreover, atmdr1-100, atpgp1-100, and their double mutants produced fewer lateral roots, in the presence or absence of 1-NAA or NPA. The atmdr1-100 and atmdr1-100/atpgp1-100 mutants also displayed enhanced root gravitropism. Genetic-epistasis analysis revealed that mutations in phyA largely suppress the randomized-hypocotyl growth and the short-hypocotyl phenotype of the atmdr1-100 mutants under far-red light, suggesting that phyA acts downstream of AtMDR1. Together, our results suggest that AtMDR1 and AtPGP1 regulate Arabidopsis (Arabidopsis thaliana) photomorphogenesis and multiple aspects of root development by mediating polar auxin transport.  相似文献   

14.
BACKGROUND AND AIMS: Rain-fed lowland rice commonly encounters stresses from fluctuating water regimes and nutrient deficiency. Roots have to acquire both oxygen and nutrients under adverse conditions while also acclimating to changes in soil-water regime. This study assessed responses of rice roots to low phosphorus supply in aerated and stagnant nutrient solution. METHODS: Rice (Oryza sativa 'Amaroo') was grown in aerated solution with high P (200 micro m) for 14 d, then transferred to high or low (1.6 micro m) P supply in aerated or stagnant solution for up to 8 d. KEY RESULTS: After only 1 d in stagnant conditions, root radial oxygen loss (ROL) had decreased by 90 % in subapical zones, whereas near the tip ROL was maintained. After 4 d in stagnant conditions, maximum root length was 11 % less, and after 8 d, shoot growth was 25 % less, compared with plants in aerated solution. The plants in stagnant solution had up to 19 % more adventitious roots, 24 % greater root porosity and 26 % higher root/shoot ratio. Rice in low P supply had fewer tillers in both stagnant and aerated conditions. After 1-2 d in stagnant solution, relative P uptake declined, especially at low P supply. Aerated roots at low P supply maintained relative P uptake for 4 d, after which uptake decreased to the same levels as in stagnant solution. CONCLUSIONS: Roots responded rapidly to oxygen deficiency with decreased ROL in subapical zones within 1-2 d, indicating induction of a barrier to ROL, and these changes in ROL occurred at least 2 d before any changes in root morphology, porosity or anatomy were evident. Relative P uptake also decreased under oxygen deficiency, showing that a sudden decline in root-zone oxygen adversely affects P nutrition of rice.  相似文献   

15.
Adventitious roots of two to four-weekold intact plants of Zea mays L. (cv. LG11) were shorter but less dense after extending into stagnant, non-aerated nutrient solution than into solution continuously aerated with air. Dissolved oxygen in the non-aerated solutions decreased from 21 kPa to 3–9 kPa within 24 h. When oxygen partial pressures similar to those found in non-aerated solutions (3, 5 and 12 kPa) were applied for 7 d to root systems growing in vigorously bubbled solutions, the volume of gas-space in the cortex (aerenchyma) was increased several fold. This stimulation of aerenchyma was associated with faster ethylene production by 45-mm-long apical root segments. When ethylene production by roots exposed to 5 kPa oxygen was inhibited by aminoethoxyvinylglycine (AVG) dissolved in the nutrient solution, aerenchyma formation was also retarded. The effect of AVG was reversible by concomitant applications of 1-aminocyclopropane-1-carboxylic acid, an immediate precursor of ethylene. Addition of silver nitrate, an inhibitor of ethylene action, to the nutrient solution also prevented the development of aerenchyma in roots given 5 kPa oxygen. Treating roots with only 1 kPa oxygen stimulated ethylene production but failed to promote gas-space formation. These severely oxygen-deficient roots seemed insensitive to the ethylene produced since a supplement of exogeneous ethylene that promoted aerenchyma development in nutrient solution aerated with air (21 kPa oxygen) failed to do so in nutrient solution supplied with 1 kPa oxygen. Both ethylene production and aerenchyma formation were almost completely halted when roots were exposed to nutrient solutions devoid of oxygen. Thus both processes require oxygen and are stimulated by oxygen-deficient surroundings in the 3-to 12-kPa range of oxygen partial pressures when compared with rates observed in air (21 kPa oxygen).Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine  相似文献   

16.
Polar auxin transport inhibitors, including N-1-naphthylphthalamicacid (NPA) and 2,3,5-triiodobenzoic acid (TIBA), have variouseffects on physiological and developmental events, such as theelongation and tropism of roots and stems, in higher plants.We isolated NPA-resistant mutants of Arabidopsis thaliana, withmutations designated pir1 and pir2, that were also resistantto TIBA. The mutations specifically affected the root-elongationprocess, and they were shown ultimately to be allelic to aux1and ein2, respectively, which are known as mutations that affectresponses to phytohormones. The mechanism of action of auxintransport inhibitors was investigated with these mutants, inrelation to the effects of ethylene, auxin, and the polar transportof auxin. With respect to the inhibition of root elongationin A. thaliana, we demonstrated that (1) the background levelof ethylene intensifies the effects of auxin transport inhibitors,(2) auxin transport inhibitors might act also via an inhibitorypathway that does not involve ethylene, auxin, or the polartransport of auxin, (3) the hypothesis that the inhibitory effectof NPA on root elongation is due to high-level accumulationof auxin as a result of blockage of auxin transport is not applicableto A. thaliana, and (4) in contrast to NPA, TIBA itself hasa weak auxin-like inhibitory effect. (Received April 12, 1996; Accepted September 2, 1996)  相似文献   

17.
生长素极性运输(PAT)在植物生长发育尤其是极性发育和模式建成中起重要作用.采用2种PAT抑制剂TIBA(2,3,5-triiodobenzoic acid)和HFCA(9-hydroxyfluorene-9-carboxylic acid)处理水稻(Oryza sativa L. cv.Zhonghua)幼苗,结果表明:PAT影响水稻根发育包括主根的伸长、侧根的起始和伸长以及不定根的发育.PAT的抑制导致主根变短、侧根和不定根数目减少.外源附加生长素(NAA)可以部分恢复不定根的形成但不能恢复侧根的形成,表明在侧根和不定根的形成上可能具有不同的机制.切片结果表明,30μmol/TIBA处理后并不完全抑制侧根原基的形成,进一步研究表明生长素由胚芽鞘向基部的运输在水稻不定根的起始和伸长中起关键作用.  相似文献   

18.
The adventitious roots of Hordeum marinum grown in stagnant deoxygenated solution contain a barrier to radial O2 loss (ROL) in basal zones, whereas roots of plants grown in aerated solution do not. The present experiments assessed whether induction of the barrier to ROL influences root hydraulic conductivity (Lpr). Wheat (Triticum aestivum) was also studied since, like H. marinum, this species forms aerenchyma in stagnant conditions, but does not form a barrier to ROL. Plants were grown in either aerated or stagnant, deoxygenated nutrient solution for 21-28 d. Root-sleeving O2 electrodes were used to assess patterns of ROL along adventitious roots, and a root-pressure probe and a pressure chamber to measure Lpr for individual adventitious roots and whole root systems, respectively. Lpr, measured under a hydrostatic pressure gradient, was 1.8-fold higher for individual roots, and 5.6-fold higher for whole roots systems, in T. aestivum than H. marinum. However, there was no difference in Lpr between the two species when measured under an osmotic driving force, when water moved from cell to cell rather than apoplastically. Root-zone O2 treatments during growth had no effect on Lpr for either species (measured in aerobic solution). It is concluded that induction of the barrier to ROL in H. marinum did not significantly affect the hydraulic conductivity of either individual adventitious roots or of the whole root system.  相似文献   

19.
Ethylene is a strong controller of root development, and it has been suggested that it is involved in the increase of lateral root development in nutrient-rich soil patches (selective root placement). Here, this contention was tested by comparing selective root placement of an ethylene-insensitive transgenic tobacco (Nicotiana tabacum) genotype (Tetr) with that of wild-type (Wt) plants. Wt and Tetr plants were grown in pots with locally increased nitrate or phosphate concentrations, after which the root growth patterns were compared with those of plants grown in pots with homogeneous nutrient distribution. Tetr plants responded to nutrient patches in a similar way to Wt plants, by placing their roots preferentially at locations with higher nutrient content, and other aspects of plant morphology were also not greatly influenced by ethylene insensitivity. The response of both Wt and Tetr plants to high-nitrate patches was considerably stronger than to locally high phosphate, suggesting that the two responses are not linked in any functional or regulatory way. As the response to nutrient patches was similar in ethylene-sensing and ethylene-insensitive plants, it is concluded that selective root placement in response to nitrate or phosphate is, at least in tobacco, not mediated or modified by ethylene action.  相似文献   

20.
The role of ethylene in the formation of lysigenous cortical cavities (aerenchyma) in seedling roots of Zea mays L. cv. Capella, has been studied under aerated and non-aerated conditions. Passing roots from air to aerated water or from an aerated nutrient solution to a non-aerated solution, promoted cavity formation and was accompanied by an increase of the endogenous ethylene concentration. When the endogenous ethylene concentration of roots in aerated nutrient solutions, which otherwise would not produce much cavities, was enhanced by applying ethylene gas (0.1 and 1.0 μl 1-1 in air) or the ethylene precursor 1-aminocyclopropane-1-car-boxylic acid, cavity formation was promoted. When, on the contrary, the endogenous ethylene concentration of the roots was reduced by adding the inhibitors of ethylene biosynthesis, cobalt ions and aminooxyacetic acid, or when the ethylene action was prevented by silver ions, cavity formation was prevented. It is concluded that endogenous ethylene controls the induction of cavity formation in the roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号