首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Measurements of the profiles of leaf area and leaf nitrogen were made on five occasions from midflowering to maturity (53, 61, 70, 78 and 83 days after emergence, DAE) in sunflower crops grown at contrasting density (2.4 and 4.8 plants m-2) and nitrogen supply (0 and 5 g N m-2 at emergence) in the summer in Buenos Aires, Argentina. As the crops matured, nitrogen was withdrawn unequally from all leaf positions and leaves senesced from the bases of the canopies. A model was used to estimate the daytime net photosynthesis (Pc) of canopies of defined leaf area and nitrogen content under the observed conditions of temperature and irradiance. Comparisons were made between the observed profiles of leaf nitrogen and those that would maximise Pc (the optimal profiles). The observed nitrogen profiles were sub-optimal at mid-flowering, except in the low-density, low-nitrogen treatment. The differences were most marked in the high-nitrogen treatments which held excessive nitrogen in their lower canopies. As the canopies matured and nitrogen was mobilised to the grain, leaf area index and total nitrogen content decreased and optimal profiles changed shape from exponential to linear. During this period observed profiles became more optimal. There was, however, little difference in Pc between observed and optimal profiles. The maximum difference was 3.2% observed in the low-density, high-nitrogen treatment at DAE 53. The comparison of actual and optimal profiles as leaf nitrogen content (mg N) in addition to the more commonly used specific leaf nitrogen (SLN, g N m-2 leaf) explains this result because relatively large changes inSLN in the small leaves at the top of canopies have little effect on Pc. The study shows that leaf nitrogen content is an appropriate basis for comparison of canopy nitrogen profiles in sunflower.  相似文献   

2.
During vegetative growth, the vertical profile of leaf nitrogen(N) often parallels the profile of light distribution withinthe canopy. This is more advantageous in terms of canopy photosynthesisthan a uniform distribution of leaf N. We investigated the influenceof both reproductive growth and N supply on the profiles ofN and light in canopies of irrigated cotton crops (Gossypiumhirsutum L.). Regular samplings were made from soon after theonset of reproductive growth until crop maturity. Every 2 weeks,a 1 m2sample of the canopy was cut in four successive verticallayers of equal thickness. Leaf area and N concentration (%)in each layer were measured. The vertical N gradient becamemore marked with ongoing reproductive development. It is hypothesizedthat because of the high rate of growth after the onset of reproductivedevelopment and the long duration of this phase compared toother species, the whole canopy photosynthetic benefit thatwould accrue from maintaining the N gradient is likely to beaccentuated. The rate of decline in leaf N concentration ina layer was not related to either the initial concentrationin the leaves nor the boll load within the layer.Copyright 2001Annals of Botany Company Gossypium hirsutum, leaf nitrogen, light profile, nitrogen, nitrogen distribution, remobilization, reproductive growth  相似文献   

3.
In monocarpic species, during the reproductive stage the growing grains represent a strong sink for nitrogen (N) and trigger N remobilization from the vegetative organs, which decreases canopy photosynthesis and accelerates leaf senescence. The spatiotemporal distribution of N in a reproductive canopy has not been described in detail. Here, we investigated the role of the local light environment on the spatiotemporal distribution of leaf lamina N mass per unit leaf area (SLN) during grain filling of field-grown wheat (Triticum aestivum). In addition, in order to provide some insight into the coordination of N depletion between the different vegetative organs, N dynamics were studied for individual leaf laminae, leaf sheaths, internodes, and chaff of the top fertile culms. At the canopy scale, SLN distribution paralleled the light gradient below the flag leaf collar until almost the end of grain filling. On the contrary, the significant light gradient along the flag leaf lamina was not associated with a SLN gradient. Within the top fertile culms, the time course of total (alive + necrotic tissues) N concentration of the different laminae and sheaths displayed a similar pattern. Another common pattern was observed for internodes and chaff. During the period of no root N uptake, N depletion of individual laminae and sheaths followed a first-order kinetics independent of leaf age, genotype, or N nutrition. The results presented here show that during grain filling, N dynamics are integrated at the culm scale and strongly depend on the local light conditions determined by the canopy structure.  相似文献   

4.
Shoots of the monocotyledonous perennial Carex acutiformis were grown in open (28 shoots m−2) and dense stands (280 shoots m−2). For fully grown stands the distribution of relative PPFD and leaf nitrogen per unit leaf area over canopy depth was determined. Light response of photosynthesis was measured on leaf segments sampled at various heights in the stands. Relations between parameters of these curves and leaf nitrogen were investigated. Simulations showed that in the open stand daily canopy photosynthesis was not affected by nitrogen redistribution in the canopy. For the dense stand however, a uniform nitrogen distribution would lead to only 73% of the maximum net carbon gain by the stand under optimal nitrogen distribution. The actual canopy photosynthesis was only 7% less than this theoretical maximum; the actual nitrogen distribution of the dense stand clearly tended to the optimal distribution. The vertical pattern of the nitrogen distribution was to a large extent determined by the minimum leaf nitrogen content. The relatively high minimum leaf nitrogen content found for Carex leaves may perhaps be necessary to maintain the physiological function of the basal parts of the leaves.  相似文献   

5.
  • 1 The ‘big‐leaf’ approach to calculating the carbon balance of plant canopies is evaluated for inclusion in the ETEMA model framework. This approach assumes that canopy carbon fluxes have the same relative responses to the environment as any single leaf, and that the scaling from leaf to canopy is therefore linear.
  • 2 A series of model simulations was performed with two models of leaf photosynthesis, three distributions of canopy nitrogen, and two levels of canopy radiation detail. Leaf‐ and canopy‐level responses to light and nitrogen, both as instantaneous rates and daily integrals, are presented.
  • 3 Observed leaf nitrogen contents of unshaded leaves are over 40% lower than the big‐leaf approach requires. Scaling from these leaves to the canopy using the big‐leaf approach may underestimate canopy photosynthesis by ~20%. A leaf photosynthesis model that treats within‐leaf light extinction displays characteristics that contradict the big‐leaf theory. Observed distributions of canopy nitrogen are closer to those required to optimize this model than the homogeneous model used in the big‐leaf approach.
  • 4 It is theoretically consistent to use the big‐leaf approach with the homogeneous photosynthesis model to estimate canopy carbon fluxes if canopy nitrogen and leaf area are known and if the distribution of nitrogen is assumed optimal. However, real nitrogen profiles are not optimal for this photosynthesis model, and caution is necessary in using the big‐leaf approach to scale satellite estimates of leaf physiology to canopies. Accurate prediction of canopy carbon fluxes requires canopy nitrogen, leaf area, declining nitrogen with canopy depth, the heterogeneous model of leaf photosynthesis and the separation of sunlit and shaded leaves. The exact nitrogen profile is not critical, but realistic distributions can be predicted using a simple model of canopy nitrogen allocation.
  相似文献   

6.
The rate of photosynthesis and its relation to tissue nitrogen content was studied in leaves and siliques of winter oilseed rape (Brassica napus L.) growing under field conditions including three rates of nitrogen application (0, 100 or 200 kg N ha-1) and two levels of irrigation (rainfed or irrigated at a deficit of 20 mm). The predominant effect of increasing N application under conditions without water deficiency was enhanced expansion of photosynthetically active leaf and silique surfaces, while the rate of photosynthesis per unit leaf or silique surface area was similar in the different N treatments. Thus, oilseed rape did not increase N investment in leaf area expansion before a decline in photosynthetic rate per unit leaf area due to N deficiency could be avoided. Much less photosynthetically active radiation penetrated into high-N canopies than into low-N canopies. The specific leaf area increased markedly in low light conditions, causing leaves in shade to be less dense than leaves exposed to ample light. In both leaves and siliques the photosynthetic rate per unit surface area responded linearly to increasing N content up to about 2 g m-2, thus showing a constant rate of net CO2 assimilation per unit increment in N (constant photosynthetic N use efficiency). At higher tissue N contents, photosynthetic rate responded less to changes in N status. Expressed per unit N, light saturated photosynthetic rate was three times higher in leaves than in silique valves, indicating a more efficient photosynthetic N utilization in leaves than in siliques. Nevertheless, from about two weeks after completion of flowering and onwards total net CO2 fixation in silique valves exceeded that in leaves because siliques received much higher radiation intensities than leaves and because the leaf area declined rapidly during the reproductive phase of growth. Water deficiency in late vegetative and early reproductive growth stages reduced the photosynthetic rate in leaves and, in particular, siliques of medium- and high-N plants, but not of low-N plants.  相似文献   

7.
The amount of photosynthetically-active photon flux density incident upon a leaf and the nitrogen content of that leaf strongly affect the photosynthetic carbon gain of that leaf. Therefore, the canopy structure of a stand, affecting the light climate in the canopy, and the leaf nitrogen distribution pattern in the canopy, affect the carbon gain of the whole canopy. This review discusses the results of studies directed to this problem and obtained so far in open and in dense canopies of stands of herbaceous, monocotyledonous or dicotyledonous, plants in their growing or flowering stages. It is found that the leaf nitrogen distribution pattern in the canopy is vertically non-uniform, and in dense stands more strongly so than in open stands. The leaf nitrogen distribution pattern in most canopies closely approaches an optimal pattern in that it maximizes whole canopy potential carbon gain as calculated for the actual total leaf nitrogen content and leaf area index of the stand. The resulting increase in potential carbon gain as compared to a uniform leaf nitrogen distribution pattern is considerable and it is larger in dense stands than in open stands. For at least some dense stands simulation studies show that with the available total leaf nitrogen content, whole canopy carbon gains could still be considerable higher had a lower leaf area index been developed.  相似文献   

8.
Variation in the photosynthetic function ofAbies amabilis foliage within a canopy was examined and related to three different processes that affect foliage function: foliage aging, sun-shade acclimation that occurred while foliage was expanding, and reacclimation after expansion was complete. Foliage produced in the sun had higher photosynthesis at light saturation (A max, mol·m-2·s-1), dark respiration (mol·m-2·s-1), nitrogen content (g·m-2), chlorophyll content (g·m-2), and chlorophylla:b ratio, and a lower chlorophyll to nitrogen ratio (chl:N), than foliage produced in the shade. As sun foliage becomes shaded, it becomes physiologically similar to shade foliage, even though it still retains a sun morphology. Shaded sun foliage exhibited lowerA max, dark respiration, nitrogen content, and chlorophylla:b ratio, and a higher chl:N ratio than sun foliage of the same age remaining in the open. However, shaded sun foliage had a higher chlorophyll content than sun foliage remaining in the open, even though true shade foliage had a lower chlorophyll content than sun foliage. This anomaly arises because as sun foliage becomes shaded, it retains a higher nitrogen content than shade foliage in a similar light environment, but the two forms have similar chl:N ratios. Within the canopy, most physiological indicators were more strongly correlated with the current light environment than with foliage age or leaf thickness, with the exception of chlorophyll content.A max decreased significantly with both decreasing current light environment of the foliage and increasing foliage age. The same trend with current light and age was found for the chlorophylla:b ratio. Foliage nitrogen content also decreased with a decrease in current light environment, but no distinct pattern was found with foliage age. Leaf thickness was also important for predicting leaf nitrogen content: thicker leaves had more nitrogen than thinner leaves regardless of light environment or age. The chl:N ratio had a strong negative correlation with the current light environment, and, as with nitrogen content, no distinct pattern was found with foliage age. Chlorophyll content of the foliage was not well correlated with any of the three predictor variables: current light environment, foliage age or leaf thickness. On the other hand, chlorophyll content was positively correlated with the amount of nitrogen in a leaf, and once nitrogen was considered, the current light environment was also highly significant in explaining the variation in chlorophyll content. It has been suggested that the redistribution of nitrogen both within and between leaves is a mechanism for photosynthetic acclimation to the current light environment. Within theseA. amabilis canopies, both leaf nitrogen and the chl:N ratio were strongly correlated with the current light environment, but only weakly with leaf age, supporting the idea that changing light is the driving force for the redistribution of nitrogen both within and between leaves. Thus, our results support previous theories on nitrogen distribution and partitioning. However,A max was significantly affected by both foliage age and the current light environment, indicating that changes in light alone are not enough to explain changes inA max with time.  相似文献   

9.
A simple analytical scheme, involving the distribution of nitrogen, to scale up photosynthesis from leaf to canopy is proposed. The scheme is based on the assumption that there are two pools of nitrogen in leaves: nitrogen in photosynthetic, degradable structures (Np) and nitrogen in non-photosynthetic and non-degradable structures (Ns). The rate of photon-saturated photosynthesis, Fm, is assumed to be proportional to Np and is distributed inside the canopy similarly to photon flux density (PFD). Prior assumptions of an optimum distribution of nitrogen are not a prerequisite. Calculations made with the scheme lead to development of the hypothesis that the canopy can be treated as a ‘big leaf’ on the time scales involved in acclimation of photosynthesis to PFD. Simulations using parameters for tree species with different requirements for PFD show that shade-tolerant species may have denser canopies than sun-demanding species because of smaller amounts of non-photosynthetic structural nitrogen and/or supporting tissue in their leaves.  相似文献   

10.
Nitrogen distribution within a leaf canopy is an important determinant of canopy carbon gain. Previous theoretical studies have predicted that canopy photosynthesis is maximized when the amount of photosynthetic nitrogen is proportionally allocated to the absorbed light. However, most of such studies used a simple Beer's law for light extinction to calculate optimal distribution, and it is not known whether this holds true when direct and diffuse light are considered together. Here, using an analytical solution and model simulations, optimal nitrogen distribution is shown to be very different between models using Beer's law and direct–diffuse light. The presented results demonstrate that optimal nitrogen distribution under direct–diffuse light is steeper than that under diffuse light only. The whole‐canopy carbon gain is considerably increased by optimizing nitrogen distribution compared with that in actual canopies in which nitrogen distribution is not optimized. This suggests that optimization of nitrogen distribution can be an effective target trait for improving plant productivity.  相似文献   

11.
BACKGROUND AND AIMS: In a leaf canopy, there is a turnover of leaves; i.e. they are produced, senesce and fall. These processes determine the amount of leaf area in the canopy, which in turn determines canopy photosynthesis. The turnover rate of leaves is affected by environmental factors and is different among species. This mini-review discusses factors responsible for leaf dynamics in plant canopies, focusing on the role of nitrogen. SCOPE: Leaf production is supported by canopy photosynthesis that is determined by distribution of light and leaf nitrogen. Leaf nitrogen determines photosynthetic capacity. Nitrogen taken up from roots is allocated to new leaves. When leaves age or their light availability is lowered, part of the leaf nitrogen is resorbed. Resorbed nitrogen is re-utilized in new organs and the rest is lost with dead leaves. The sink-source balance is important in the regulation of leaf senescence. Several models have been proposed to predict response to environmental changes. A mathematical model that incorporated nitrogen use for photosynthesis explained well the variations in leaf lifespan within and between species. CONCLUSION: When leaf turnover is at a steady state, the ratio of biomass production to nitrogen uptake is equal to the ratio of litter fall to nitrogen loss, which is an inverse of the nitrogen concentration in dead leaves. Thus nitrogen concentration in dead leaves (nitrogen resorption proficiency) and nitrogen availability in the soil determine the rate of photosynthesis in the canopy. Dynamics of leaves are regulated so as to maximize carbon gain and resource-use efficiency of the plant.  相似文献   

12.
Effects of leaf age, nitrogen nutrition and photon flux density (PFD) on the distribution of nitrogen among leaves were investigated in a vine, Ipomoea tricolor Cav., which had been grown horizontally so as to avoid mutual shading of leaves. The nitrogen content was highest in newly developed young leaves and decreased with age of leaves in plants grown at low nitrate concentrations and with all leaves exposed to full sunlight. Thus, a distinct gradient of leaf nitrogen content was formed along the gradient of leaf age. However, no gradient of leaf nitrogen content was formed in plants grown at a high nitrate concentration. Effects of PFD on the distribution of nitrogen were examined by shading leaves in a manner that simulated changes in the light gradient of an erect herbaceous canopy (i.e., where old leaves were placed under increasingly darker conditions with growth of the canopy). This canopy-type shading steepened the gradient of leaf nitrogen content in plants grown at a low nitrogen supply, and created a gradient in plants grown at high concentrations of nitrate. The steeper the gradient of PFD, the larger the gradient of leaf nitrogen that was formed. When the gradient of shading was inverted, that is, younger leaves were subjected to increasingly heavier shade, while keeping the oldest leaves exposed to full sunlight, an inverted gradient of leaf nitrogen content was formed at high nitrate concentrations. The gradient of leaf nitrogen content generated either by advance of leaf age at low nitrogen availability, or by canopy-type shading, was comparable to those reported for the canopies of erect herbaceous plants. It is concluded that both leaf age and PFD have potential to cause the non-uniform distribution of leaf nitrogen. It is also shown that the contribution of leaf age increases with the decrease in nitrogen nutrition level.  相似文献   

13.
Light gradients within tree canopies play a major role in the distribution of plant resources that define the photosynthetic capacity of sun and shade leaves. However, the biochemical and diffusional constraints on gas exchange in sun and shade leaves in response to light remain poorly quantified, but critical for predicting canopy carbon and water exchange. To investigate the CO2 diffusion pathway of sun and shade leaves, leaf gas exchange was coupled with concurrent measurements of carbon isotope discrimination to measure net leaf photosynthesis (An), stomatal conductance (gs) and mesophyll conductance (gm) in Eucalyptus tereticornis trees grown in climate controlled whole‐tree chambers. Compared to sun leaves, shade leaves had lower An, gm, leaf nitrogen and photosynthetic capacity (Amax) but gs was similar. When light intensity was temporarily increased for shade leaves to match that of sun leaves, both gs and gm increased, and An increased to values greater than sun leaves. We show that dynamic physiological responses of shade leaves to altered light environments have implications for up‐scaling leaf level measurements and predicting whole canopy carbon gain. Despite exhibiting reduced photosynthetic capacity, the rapid up‐regulation of gm with increased light enables shade leaves to respond quickly to sunflecks.  相似文献   

14.
In a previous study (Yin et al. 2000. Annals of Botany 85: 579-585), a generic logarithmic equation for leaf area index (L) in relation to canopy nitrogen content (N) was developed: L=(1/ktn)1n(1+ktnN/nb). The equation has two parameters: the minimum leaf nitrogen required to support photosynthesis (nb), and the leaf nitrogen extinction coefficient (ktn). Relative to nb, there is less information in the literature regarding the variation of ktn. We therefore derived an equation to theoretically estimate the value of ktn. The predicted profile of leaf nitrogen in a canopy using this theoretically estimated value of ktn is slightly more uniform than the profile predicted by the optimum nitrogen distribution that maximizes canopy photosynthesis. Relative to the optimum profile, the predicted profile is somewhat closer to the observed one. Based on the L-N logarithmic equation and the theoretical ktn value, we further quantified early leaf area development of a canopy in relation to nitrogen using simulation analysis. In general, there are two types of relations between L and N, which hold for canopies at different developmental phases. For a fully developed canopy where the lowest leaves are senescing due to nitrogen shortage, the relationship between L and N is described well by the logarithmic model above. For a young, unclosed canopy (i.e. L < 1.0), the relation between L and N is nearly linear. This linearity is virtually the special case of the logarithmic model when applied to a young canopy where its total nitrogen content approaches zero and the amount of nitrogen in its lowest leaves is well above nb. The expected patterns of the L-N relationship are discussed for the phase of transition from young to fully developed canopies.  相似文献   

15.
Abstract Field gas exchange measurements on intact peach (Prunus persica (L.) Batsch) leaves indicate that leaf nitrogen content (NL) and leaf weight per unit leaf area (Wa) are highly correlated with CO2 assimilation rate (A) and mesophyll conductance (gm). Therefore, NL and Wa were used to study seasonal relationships between leaf carboxylation capacity and natural light exposure in tree canopies. From mid-season onwards, NL and Wa were linearly correlated with light exposure expressed as the amount of time during a clear day that a leaf was exposed to a photosynthetic photon flux density (Q) of ≥ 100 μmol m?2 s?1. The data support the hypothesis that whole-tree photosynthesis is optimized by partitioning of photosynthetic capacity among leaves in deciduous tree canopies with respect to natural light exposure.  相似文献   

16.
The vertical gradient of the leaf nitrogen content in a plant canopy is one of the determinants of vegetation productivity. The ecological significance of the nitrogen distribution in plant canopies has been discussed in relation to its optimality; nitrogen distribution in actual plant canopies is close to but always less steep than the optimal distribution that maximizes canopy photosynthesis. In this paper, I review the optimality of nitrogen distribution within canopies focusing on recent advancements. Although the optimal nitrogen distribution has been believed to be proportional to the light gradient in the canopy, this rule holds only when diffuse light is considered; the optimal distribution is steeper when the direct light is considered. A recent meta-analysis has shown that the nitrogen gradient is similar between herbaceous and tree canopies when it is expressed as the function of the light gradient. Various hypotheses have been proposed to explain why nitrogen distribution is suboptimal. However, hypotheses explain patterns observed in some specific stands but not in others; there seems to be no general hypothesis that can explain the nitrogen distributions under different conditions. Therefore, how the nitrogen distribution in canopies is determined remains open for future studies; its understanding should contribute to the correct prediction and improvement of plant productivity under changing environments.  相似文献   

17.
1. The response of photosynthesis to radiation is an often-studied but poorly understood process, represented empirically in most photosynthesis models. However, in scaling photosynthesis from leaf to canopy, predictions of canopy photosynthesis are very sensitive to parameters describing the response of leaves to Photosynthetic Photon Flux Density (PPFD).
2. In this study, a mechanistic, yet still simple, approach is presented that models the degree of light saturation in leaves explicitly, assuming a heterogeneous environment of PPFD and chlorophyll.
3. Possible mechanisms determining the ratio of chlorophyll to nitrogen are considered, including a direct dependence on PPFD, a mechanism involving the red/far-red ratio of light in the canopy, and an approach based upon maximizing photosynthesis.
4. Comparison of model predictions with two data sets of light, nitrogen and chlorophyll from canopies of Populus and Corylus suggests that the red/far-red mechanism is the most realistic. The data also show that the trees studied do not always optimize their nitrogen partitioning to maximize photosynthetic yield.
5. We then apply the model to the data sets, to predict the shape of light response curves of leaves within canopies and assess the applicability of simple scaling schemes, in which full acclimation of photosynthesis to PPFD justifies the use of big-leaf models. We conclude that, at least for the data used, basic assumptions of such schemes do not hold.  相似文献   

18.
太岳山典型阔叶乔木冠层叶片性状的分布格局   总被引:1,自引:1,他引:0  
以太岳山4种阔叶乔木不同冠层高度的叶片为研究对象,用LI-3000A叶面积仪和Li-6400便携式光合作用测定系统分别测定了这4种乔木不同冠层高度叶片的叶面积大小和单位面积的叶光饱和速率(Aarea);同时测定了其叶氮含量;计算了其比叶面积(SLA)、单位面积叶氮含量(Narea)、单位重量叶氮含量(Nmass)、单位重量的叶光饱和速率(Amass)和光合氮素利用效率(PNUE),对植株不同冠层高度叶片的SLA、叶氮和光合特性的空间分布格局进行了比较研究,结果表明:Aarea、Amass、Nmass、PNUE、SLA和Narea在树冠上层、中层和下层的差异均达到了极显著水平(P<0.001),表明树冠不同高度的叶片性状参数差异较大;在相同SLA下,Nmass和Narea在冠层中的分布均表现为中层>上层>下层,并出现平行位移现象;Aarea和Nmass都以中层值最大,表明冠层光合能力分布格局以中层相对较高。  相似文献   

19.
《Acta Oecologica》1999,20(5):559-570
Vertical distribution patterns of light, leaf nitrogen, and leaf gas exchange through canopies of the clonal perennial Solidago altissima were studied in response to mowing and fertilizer application in a field experiment. Consistent with the distribution of light, average leaf nitrogen content followed a `smooth' exponential decline along the fertilized stands both in control and mown plots. The nitrogen profile along the unfertilized stands in mown plots, however, was `disrupted' by high-nitrogen leaves at the top of shorter ramets that only reached intermediate strata of the canopies. Hence, in these stands leaf nitrogen was significantly increased in short ramets compared with tall ramets for a given light environment, suggesting suboptimal stand structure but not necessarily suboptimal single-ramet architecture. However, at least under the climatic conditions observed during measurements, such disrupture had no substantial effect on stand productivity: model calculations showed that vertical distribution patterns of leaf nitrogen along ramets only marginally influenced the photosynthetic performance of ramets and stands. This is explained by the observed photosynthesis-nitrogen relationship: the rate of photosynthesis per unit amount of leaf nitrogen did not increase with leaf nitrogen content even under saturating light levels indicating that leaf photosynthesis was not nitrogen limited during the measurement periods. Nevertheless, our study indicates that consideration of how architecture(s) of adjacent individual plants interact could be essential for a better understanding of the trade-offs between individual and canopy characteristics for maximizing carbon gain. Such trade-offs may end up in a suboptimal canopy structure, which could not be predicted and understood by classical canopy optimization models.  相似文献   

20.
温室栽培西瓜座果期冠层光合作用日变化研究   总被引:1,自引:0,他引:1  
在兰州春季塑料日光温室条件下研究了‘宝冠’和‘新金兰’两个品种西瓜(Citrullus lantus(Thunb.) Mansf.)冠层光合作用日变化特性。结果表明,日光温室两个西瓜品种间冠层光照分布和单叶光合作用日变化模式存在明显的差异,冠层光照条件影响各叶层的光合强度及其日变化态势。两品种冠层整体光合速率日动态呈单峰型,‘宝冠’的光合生产力高于‘新金兰’。‘宝冠’西瓜单叶光合速率较高,高效光合时间较长,且表现出午休特征。‘新金兰’西瓜单叶光合速率低,高效光合维持时间较短,未表现出明显午休特征。‘宝冠’光合作用的瞬时水分效率 (WUE)高于‘新金兰’,两品种上午的WUE高于下午,上层叶的WUE高于下层叶。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号