首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two Pythium-infested soils were used to compare the wheat root and rhizosphere soil microbial communities from plants grown in the field or in greenhouse trials and their stability in the presence of biocontrol agents. Bacteria showed the highest diversity at early stages of wheat growth in both field and greenhouse trials, while fungal diversity increased later on, at 12 weeks of the crop cycle. The microbial communities were stable in roots and rhizosphere samples across both soil types used in this study. Such stability was also observed irrespective of the cultivation system (field or greenhouse) or addition of biocontrol coatings to wheat seeds to control Pythium disease (in this study soil infected with Pythium sp. clade F was tested). In greenhouse plant roots, Archaeorhizomyces, Debaryomyces, Delftia, and unclassified Pseudeurotiaceae were significantly reduced when compared to plant roots obtained from the field trials. Some operational taxonomic units (OTUs) represented genetic determinants clearly transmitted vertically by seed endophytes (specific OTUs were found in plant roots) and the plant microbiota was enriched over time by OTUs from the rhizosphere soil. This study provided key information regarding the microbial communities associated with wheat roots and rhizosphere soils at different stages of plant growth and the role that Paenibacillus and Streptomyces strains play as biocontrol agents in supporting plant growth in infested soils.  相似文献   

2.
Total and culturable rhizosphere microbial communities structure from three different genotypes of Arabidopsis thaliana growing on three different substrates was studied with phospholipid fatty acid analysis (PLFA) and multivariate statistical analyses: correspondence analysis (CA) and distance based redundancy analyses (db-RDA). In addition, microbial biomass from different groups (total bacteria, Gram+, Gram? and fungi) was calculated from biomarkers PLFA peak area, both from total and culturable microbial community. db-RDA analysis showed significant differences between soils but not between plant genotypes for culturable microbial community structure. Total microbial community was significantly different between soils, and also between plant lines in each soil. Biomass of different bacterial groups showed significant higher values in soil two rhizosphere irrespective of the plant line. In addition, significant differences between plant lines were also found for microbial biomass of different bacterial groups both in total and culturable microbial community. Throughout the work we have demonstrated that PLFA analysis has been able to show a different behaviour of total microbial community with regard to the culturable fraction analyzed in this work under the influence of plant roots. Microbial biomass of different microbial groups calculated with PLFA biomarkers was a suitable tool to detect differences between soils irrespective of the plant line, and differences in the same soil between plant lines. According to this data, a previous study should be carried out before GMPs are used in field conditions to evaluate the potential alterations that may take place on rhizosphere microbial communities structure which may further affect soil productivity. In conclusion, based on data presented in this work, GMPs alter rhizosphere microbial communities structure and this effect is different depending on the soil. Furthermore, total microbial community is affected to a greater extent than the culturable fraction analyzed.  相似文献   

3.
为探究不同积累型小麦品种对根际微生物群落结构及功能多样性的影响,以镉低积累型小麦济麦22和镉高积累型小麦冀5265为研究材料,采用分离培养法和Biolog-Eco微平板法分析根际细菌数量、可培养优势群落结构以及微生物群落功能多样性。结果表明:污染土壤济麦22根际总细菌数量和抗Cd细菌数量均显著高于冀5265,而非污染土壤中两品种间无差异。污染土济麦22根际发现较多产脲酶和高镉抗性菌株(200 mg/L)。污染土济麦22根际优势菌多为Arthrobacter sp.和Bacillus sp.,冀5265根际优势菌主要为Streptomyces sp.;非污染土济麦22与冀5265根际优势菌群相似,均以Bacillus sp.为主。Biolog试验结果表明,两个小麦品种根际微生物群落对碳源的利用能力存在差异,济麦22根际微生物AWCD值、Mc Intosh指数、Shannon-Wiener指数、Simpson指数在污染土和无污染土中均显著高于冀5265。因此,污染土壤中不同积累型小麦品种根际微生物群落结构及功能多样性均存在差异,该研究结果对于揭示高低积累型小麦根际微生物机制提供了重要参考依...  相似文献   

4.
A coupling of above-ground plant diversity and below-ground microbial diversity has been implied in studies dedicated to assessing the role of macrophyte diversity on the stability, resilience, and functioning of ecosystems. Indeed, above-ground plant communities have long been assumed to drive below-ground microbial diversity, but to date very little is known as to how plant species composition and diversity influence the community composition of micro-organisms in the soil. We examined this relationship in fields subjected to different above-ground biodiversity treatments and in field experiments designed to examine the influence of plant species on soil-borne microbial communities. Culture-independent strategies were applied to examine the role of wild or native plant species composition on bacterial diversity and community structure in bulk soil and in the rhizosphere. In comparing the influence of Cynoglossum officinale (hound's tongue) and Cirsium vulgare (spear thistle) on soil-borne bacterial communities, detectable differences in microbial community structure were confined to the rhizosphere. The colonisation of the rhizosphere of both plants was highly reproducible, and maintained throughout the growing season. In a separate experiment, effects of plant diversity on bacterial community profiles were also only observed for the rhizosphere. Rhizosphere soil from experimental plots with lower macrophyte diversity showed lower diversity, and bacterial diversity was generally lower in the rhizosphere than in bulk soil. These results demonstrate that the level of coupling between above-ground macrophyte communities and below-ground microbial communities is related to the tightness of the interactions involved. Although plant species composition and community structure appear to have little discernible effect on microbial communities inhabiting bulk soil, clear and reproducible changes in microbial community structure and diversity are observed in the rhizosphere. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Culturability as an Indicator of Succession in Microbial Communities   总被引:2,自引:0,他引:2  
Successional theory predicts that opportunistic species with high investment of energy in reproduction and wide niche width will be replaced by equilibrium species with relatively higher investment of energy in maintenance and narrower niche width as communities develop. Since the ability to rapidly grow into a detectable colony on nonselective agar medium could be considered as characteristic of opportunistic types of bacteria, the percentage of culturable cells may be an indicator of successional state in microbial communities. The ratios of culturable cells (colony forming units on R2A agar) to total cells (acridine orange direct microscopic counts) and culturable cells to active cells (reduction of 5-cyano-2,3-ditolyl tetrazolium chloride) were measured over time in two types of laboratory microcosms (the rhizosphere of hydroponically grown wheat and aerobic, continuously stirred tank reactors containing plant biomass) to determine the effectiveness of culturabilty as an index of successional state. The culturable cell:total cell ratio in the rhizosphere decreased from approximately 0.25 to less than 0.05 during the first 30-50 days of plant growth, and from 0.65 to 0.14 during the first 7 days of operation of the bioreactor. The culturable cell:active cell ratio followed similar trends, but the values were consistently greater than the culturable cell:total cell ratio, and even exceeded I in early samples. Follow-up studies used a cultivation-independent method, terminal restriction fragment length polymorphisms (TRFLP) from whole community DNA, to assess community structure. The number of TRFLP peaks increased with time, while the number of culturable types did not, indicating that the general decrease in culturability is associated with a shift in community structure. The ratio of respired to assimilated C-14-labeled amino acids increased with the age of rhizosphere communities, supporting the hypothesis that a shift in resource allocation from growth to maintenance occurs with time. Results from this work indicate that the percentage of culturable cells may be a useful method for assessing the successional state of microbial communities.  相似文献   

6.
The effect of altitude on the composition and diversity of microbial communities have attracted highly attention recently but is still poorly understood. We used 16S rRNA gene clone library analyses to characterize the bacterial communities from the rhizosphere and roots of Stellera chamaejasme in the Tibetan Plateau. Our results revealed that Actinobacteria and Proteobacteria were dominant bacteria in this medicinal plant in the rhizosphere and root communities. The Shannon diversity index showed that the bacterial diversity of rhizosphere follows a small saddle pattern, while the roots possesses of a hump-backed trend. Significant differences in the composition of bacterial communities between rhizosphere and roots were detected based on multiple comparisons analysis. The community of Actinobacteria was found to be significantly negative correlated with soil available P (p?<?0.01), while the phylum of Proteobacteria showed a positive relationship with available P (p?<?0.05). Moreover, redundancy analysis indicated that soil phosphorus, pH, latitude, elevation and potassium positively correlated with bacterial communities associated with rhizosphere soils. Taken together, we provide evidence that bacterial communities associated with S. chamaejasme exhibited some certain elevational pattern, and bacterial communities of rhizosphere soil were regulated by environmental characteristics along elevational gradients in this alpine ecosystem.  相似文献   

7.
Two species of Pseudomonas (i.e. P. chlororaphis or P. putida) derived from a maize rhizosphere were studied for their impact on the structure of the microbial community in the rhizosphere of young maize seedlings after inoculation. The culturable bacteria and total microbial communities were analyzed based on profiles of whole-cell fatty acid methyl esters (MIDI-FAME). The introduction of Pseudomonas species resulted in the shift from the Gram-positive dominated culturable community in the rhizosphere of uninoculated maize to more Gram-negative populations in the rhizospheres of the inoculated plants. For the total rhizosphere communities, 43, 47 and 42 FAMEs were detected in the uninoculated maize and the samples inoculated with P. chlororaphis or P. putida, respectively. In contrast to the culturable communities, low concentrations of marker FAMEs for Gram-positives (i15:0, a15:0, i16:0) were found in the profiles of the total rhizosphere communities. The maize inoculations resulted in an enrichment of some Gram-negative isolates; however, Gram-positive bacteria, Cytophaga/Flavobacterium and saprophytic fungi were found in the uninoculated rhizosphere.  相似文献   

8.
The rhizosphere constitutes a complex niche that may be exploited by a wide variety of bacteria. Bacterium–plant interactions in this niche can be influenced by factors such as the expression of heterologous genes in the plant. The objective of this work was to describe the bacterial communities associated with the rhizosphere and rhizoplane regions of tobacco plants, and to compare communities from transgenic tobacco lines (CAB1, CAB2 and TRP) with those found in wild-type (WT) plants. Samples were collected at two stages of plant development, the vegetative and flowering stages (1 and 3 months after germination). The diversity of the culturable microbial community was assessed by isolation and further characterization of isolates by amplified ribosomal RNA gene restriction analysis (ARDRA) and 16S rRNA sequencing. These analyses revealed the presence of fairly common rhizosphere organisms with the main groups Alphaproteobacteria, Betaproteobacteria, Actinobacteria and Bacilli. Analysis of the total bacterial communities using PCR-DGGE (denaturing gradient gel electrophoresis) revealed that shifts in bacterial communities occurred during early plant development, but the reestablishment of original community structure was observed over time. The effects were smaller in rhizosphere than in rhizoplane samples, where selection of specific bacterial groups by the different plant lines was demonstrated. Clustering patterns and principal components analysis (PCA) were used to distinguish the plant lines according to the fingerprint of their associated bacterial communities. Bands differentially detected in plant lines were found to be affiliated with the genera Pantoea, Bacillus and Burkholderia in WT, CAB and TRP plants, respectively. The data revealed that, although rhizosphere/rhizoplane microbial communities can be affected by the cultivation of transgenic plants, soil resilience may be able to restore the original bacterial diversity after one cycle of plant cultivation.  相似文献   

9.
Systemic acquired resistance (SAR) is an inducible systemic plant defense against a broad spectrum of plant pathogens, with the potential to secrete antimicrobial compounds into the soil. However, its impact on rhizosphere bacteria is not known. In this study, we examined fingerprints of bacterial communities in the rhizosphere of the model plant Arabidopsis thaliana to determine the effect of SAR on bacterial community structure and diversity. We compared Arabidopsis mutants that are constitutive and non-inducible for SAR and verified SAR activation by measuring pathogenesis-related protein activity via a β-glucoronidase (GUS) reporter construct driven by the β-1-3 glucanase promoter. We used terminal restriction fragment length polymorphism (T-RFLP) analysis of MspI- and HaeIII-digested 16S rDNA to estimate bacterial rhizosphere community diversity, with Lactobacillus sp. added as internal controls. T-RFLP analysis showed a clear rhizosphere effect on community structure, and diversity analysis of both rhizosphere and bulk soil operational taxonomic units (as defined by terminal restriction fragments) using richness, Shannon–Weiner, and Simpson’s diversity indices and evenness confirmed that the presence of Arabidopsis roots significantly altered bacterial communities. This effect of altered soil microbial community structure by plants was also seen upon multivariate cluster analysis of the terminal restriction fragments. We also found visible differences in the rhizosphere community fingerprints of different Arabidopsis SAR mutants; however, there was no clear decrease of rhizosphere diversity because of constitutive SAR expression. Our study suggests that SAR can alter rhizosphere bacterial communities, opening the door to further understanding and application of inducible plant defense as a driving force in structuring soil bacterial assemblages.  相似文献   

10.
为了解喀斯特典型物种-小蓬竹根际土壤微生物及不同部位内生真菌多样性,采用沿等高线等距离取样法采集小蓬竹根际土壤及健康植株,通过可培养对根际土微生物及内生菌进行分离,利用分子技术对其进行鉴定,根据鉴定结果构建系统发育树,并计算小蓬竹根际土壤微生物和根茎叶内生真菌多样性。结果如下:(1)共从根际土壤、根、茎、叶分离得到139个真菌菌株,隶属于27属,其中根际土壤分离得到34个真菌菌株隶属于12属,根部分离得到的63个内生真菌菌株隶属于17个属,茎部分离得到的14个内生真菌菌株隶属于8个属,叶部分离得到28个内生真菌菌株隶属于9个属;(2)根际土壤共分离得到41株细菌菌株,隶属于7个属26个种,20株放线菌菌株,隶属于1属15种;从Shannon-Wiener多样性指数、均匀度指数、Simpson指数排序来看,真菌主要表现为根 > 根际土壤 > 茎 > 叶,细菌和放线菌多样性均较低。(3)按层次聚类分析可分别将真菌、细菌、放线菌聚为3支。小蓬竹根际土壤、根、茎和叶具有丰富的微生物多样性,不同部位菌群组成存在差异性(P<0.05),且存在以假单胞菌属、芽孢杆菌属等为优势属的抗盐耐旱菌群,这有助于揭示小蓬竹对喀斯特生境的适应性,以及为微生物-植物群落之间相互关系提供一定基础数据,为后期寻找小蓬竹相关耐性功能菌奠定基础。  相似文献   

11.
不同生境黑果枸杞根际与非根际土壤微生物群落多样性   总被引:2,自引:0,他引:2  
李岩  何学敏  杨晓东  张雪妮  吕光辉 《生态学报》2018,38(17):5983-5995
研究典型生境黑果枸杞根际与非根际土壤微生物群落多样性及其与土壤理化性质间的关系,为进一步研究黑果枸杞抗逆性提供理论数据。采集新疆精河县艾比湖地区(EB)盐碱地、乌苏市(WS)路旁荒地、五家渠市(WQ)人工林带的黑果枸杞根际与非根际土壤,利用Illumina-MiSeq高通量测序技术分析细菌和真菌群落组成和多样性。结果表明:根际土壤细菌多样性高于非根际土壤(WQ除外),而根际真菌多样性低于非根际土壤。WQ非根际土壤细菌和真菌多样性均高于EB和WS;根际细菌多样性排序为EBWSWQ,根际真菌多样性排序为WSEBWQ。根际土壤优势细菌门依次是变形菌门、拟杆菌门、放线菌门、酸杆菌门,真菌优势门为子囊菌门、担子菌门。根际土壤细菌变形菌门、拟杆菌门、酸杆菌门的相对丰度高于非根际土壤,而厚壁菌在根际土壤中的丰度显著降低,真菌优势门丰度在根际土和非根际土中的变化趋势因地区而异; Haliea、Gp10、Pelagibius、Microbulbifer、假单胞菌属、Thioprofundum、Deferrisoma是根际土壤细菌优势属;多孢子菌属、支顶孢属、Corollospora、Cochlonema是根际真菌优势属。细菌、真菌优势类群(门、属)的组成以及丰富度存在地区间差异,厚壁菌门在EB地区的丰富度显著高于含盐量较低的WS、WQ;盐碱生境EB中根际土壤嗜盐细菌的丰度高于非盐碱生境(WQ、WS),如盐单胞菌属、动性球菌属、Geminicoccu、Pelagibius、Gracilimonas、Salinimicrobium等。小囊菌属是EB根际真菌的最优势属,Melanoleuca是WQ和WS的最优势属,地孔菌属、Xenobotrytis、Brachyconidiellopsis、多孢子菌属等在EB根际土壤中的丰度显著高于WQ和WS。非盐碱生境(WS和WQ)的微生物群落之间的相似性较高,并且高于与盐碱环境(EB)之间的相似性,表明土壤含盐量对微生物群落组成丰度具有重要的影响。  相似文献   

12.
The gap between current average global wheat yields and that achievable through best agronomic management and crop genetics is large. This is notable in intensive wheat rotations which are widely used. Expectations are that this gap can be reduced by manipulating soil processes, especially those that involve microbial ecology. Cross‐year analysis of the soil microbiome in an intensive wheat cropping system revealed that rhizosphere bacteria changed much more than the bulk soil community. Dominant factors influencing populations included binding to roots, plant age, site and planting sequence. We demonstrated evolution of bacterial communities within the field rhizosphere. Early in the season, communities tightly bound to the root were simplest. These increased in diversity with plant age and senescence. Loosely bound communities also increased in diversity from vegetative to reproductive plant stages but were more stable than those tightly bound to roots. Planting sequence and, to a lesser extent, wheat genotype also significantly affected rhizosphere bacteria. Plasticity in the rhizosphere generated from crop root system management and genetics offers promise for manipulating the soil ecology of intense cereal systems. Analyses of soil microbiomes for the purpose of developing agronomic benefit should include roots as well as soil loosely adhered to the roots, and the bulk soil.  相似文献   

13.
盐生植物种类及其所具有的不同耐盐调节方式影响着根际微生物群落的结构与组成。为明确不同类型盐生植物根际与非根际土壤中真菌群落结构与组成的差异及其与土壤环境间的相互关系,该研究采集了黄河三角洲地区芦苇、盐地碱蓬、獐毛3种不同类型盐生植物0~20 cm土层的根际和非根际土壤,通过高通量测序对其真菌群落多样性和结构进行了分析,以探究真菌群落特征与土壤理化因子间的关系。结果表明:(1)3种不同类型盐生植物根际土壤真菌群落丰富度显著大于各自非根际土,且獐毛根际土壤真菌群落丰富度显著大于芦苇和盐地碱蓬的根际土。(2)距离热图分析表明,芦苇和盐地碱蓬非根际土壤真菌群落间的相似性最大。(3)土壤真菌多样性和丰富度与土壤总碳、总氮、有效磷、pH呈正相关关系,与土壤盐分含量呈负相关关系。(4)3种不同类型盐生植物的根际与非根际土壤中,球囊菌门(Glomeromycota)均为绝对优势门,盾巨孢囊霉属(Scutellospora)为优势属。(5)RDA分析表明,土壤盐分含量是影响土壤真菌群落结构的重要因子,球囊菌门丰度与土壤总氮、总碳、有效磷、有机碳、pH呈正相关关系,与盐分呈负相关关系。(6)植物土壤真菌群...  相似文献   

14.
【目的】转Bt基因和Bar基因植物的微生态效应是环境安全评价的重要因素,但关于Bt基因和Bar基因转化引起的水稻基因型改变对水稻不同组织生态位微生物群落组成和潜在功能的影响还无系统研究。【方法】以转Bt基因和Bar基因水稻T1C-1及其亲本对照Minghui63为研究对象,基于细菌16S rRNA基因和真菌ITS高通量测序技术,分析抽穗期T1C-1和Minghui63根际土壤微生物以及根、茎、叶内生菌的群落结构和潜在功能。【结果】细菌和真菌群落多样性在水稻不同组织生态位之间发生显著变化,地下部分组织生态位(根际土壤和根系)微生物多样性显著高于地上部分(叶和茎)。T1C-1显著影响叶片内生真菌的香农指数和辛普森指数,而对茎和根的内生菌以及根际土壤微生物多样性无显著影响。叶片内生真菌曲霉菌属(Aspergillus)和篮状菌属(Talaromyces)相对丰度在T1C-1显著增加,推测其参与碳素代谢、能量代谢和转录作用酶合成等过程。T1C-1和Minghui63微生物群落关联网络分析表明,T1C-1的平均聚类系数和平均度显著高于Minghui63,因而T1C-1提高了相关微生物群落网络复杂程度。通过重建未观测状态对群落进行系统发育研究(phylogenetic investigation of communities by reconstruction of unobserved states, PICRUSt2),对叶片内生真菌功能酶基因进行功能预测,相对于Minghui63,T1C-1显著改变了碳素代谢、脂类代谢和能量代谢等途径。【结论】相较于根际土壤,叶片内生真菌的群落组成和潜在功能对T1C-1更敏感。尽管如此,T1C-1并未导致叶片内生真菌的多样性指数降低。为了更准确地评估转基因植物的微生态效应,我们需要加强对不同组织生态位内生菌多样性的关注。  相似文献   

15.
Little is known about the community dynamics of fungi on decomposing fine roots, despite the importance of fine roots as a source of carbon to detrital systems in forests. We examined fungal communities on dead roots in a sugar-maple dominated northern hardwood forest to test the hypothesis that community development is sensitive to rhizosphere disruption. We generated cohorts of dead fine roots in root windows and disturbed the rhizosphere microbial community in half of the windows by moving roots into sieved bulk soil. We sampled root fragments repeatedly over time and cultured fungi from these fragments to explore temporal patterns of fungal species composition. Disturbing the root rhizosphere prior to initiating decomposition changed the dominant fungal taxa, the distribution of dominant species within the community, and the temporal development in the culturable fungal community. Dominance in control roots shifted from Neonectria in early decay to Umbelopsis in later decay. Disturbance roots were more evenly dominated over time by Trichoderma, Neonectria, another species of Umbelopsis, and Pochonia. Our results suggest that species interactions are important in the ecology of fine root decay fungi, with the rhizosphere community of the living root influencing development of the decay community.  相似文献   

16.
The plant rhizosphere is a dynamic environment in which many parameters may influence the population structure, diversity and activity of the microbial community. Two important factors determining the structure of microbial community present in the vicinity of plant roots are plant species and soil type. In the present study we assessed the structure of microbial communities in response to four plant species (i.e. maize (Zea mays L.), oat (Avena sativa L.), barley (Hordeum vulgare L.) and commercial grass mix) planted in soil with different land use history (i.e. arable land under crop rotation, maize monoculture and permanent grassland). Both factors, plant species and land use history, showed clear effects on microbial community and diversity as determined by PCR-DGGE fingerprinting with universal and group-specific bacterial primers. Moreover, we explored the rhizosphere effect of these plant species on the abundance of bacterial antagonists of the potato pathogen Rhizoctonia solani AG3. The data showed that the abundance and taxonomic composition of antagonists differed clearly between the different plants. The highest percentages of antagonists were found in maize and grass rhizosphere. When antagonistic Pseudomonas populations were compared, the highest, abundance and diversity of antagonists were detected in barley and oat rhizospheres, as compared to maize and grass rhizosphere. The results obtained in our study demonstrate clearly that plant species and soil type are two important factors affecting the structure of total bacterial, Pseudomonas and Bacillus community.  相似文献   

17.
Recent interest in microbial diversity has led to increased emphasis on the development of appropriate techniques. Structural diversity encompasses the number and distribution of separate or interacting biological entities responsible for a given function within the overall set of functions of a community. This study evaluated an approach for estimating the relative degree of structural diversity in heterotrophic microbial communities by dilution to extinction of community phenotypic traits. Serial dilutions of environmental samples (rhizosphere, stream) were tested for community phenotypic traits (i.e. carbon source respiration). The non-linear relationship between the number of positive responses (i.e. functional richness or R) and inoculum density in each sample dilution (I) fit the simple rectangular hyperbola model, allowing estimation of the maximal richness (R(max)) and the inoculum density at half-maximal richness (K(I)). The later term appears to be useful in assessing relative structural diversity as evidenced by significantly higher values for communities with higher predicted species diversity. The examination of community functional characteristics across a series of dilutions, particularly in conjunction with other techniques, may be a useful approach for the study of microbial diversity and related ecological parameters such as niche width and metabolic redundancy.  相似文献   

18.
The distribution of culturable bacteria in the rhizosphere, rhizoplane, and interior root tissues of moso bamboo plants was investigated in this study. Of the 182 isolates showing different colony characteristics on Luria–Bertani and King B plates, 56 operational taxonomic units of 22 genera were identified by 16S ribosomal RNA gene sequence analysis. The majority of root endophytic bacteria were Proteobacteria (67.5%), while the majority of rhizospheric and rhizoplane bacteria were Firmicutes (66.3% and 70.4%, respectively). The most common genus in both the rhizosphere and on the rhizoplane was Bacillus (42.4% and 44.4%, respectively), while Burkholderia was the most common genus inside the roots, comprising 35.0% of the isolates from this root domain. The endophytic bacterial community was less diverse than the rhizoplane and rhizospheric bacterial communities. Members of Lysinibacillus, Bacillus, and Burkholderia were found in all three root domains, whereas many isolates were found in only a single domain. Our results show that the population diversity of culturable bacteria is abundant in the root domains of moso bamboo plants and that obvious differences exist among the rhizospheric, rhizoplane, and endophytic bacterial communities.  相似文献   

19.
Yang  Mei  Zou  Jie  Liu  Chengyi  Xiao  Yujun  Zhang  Xiaoping  Yan  Lijuan  Ye  Lei  Tang  Ping  Li  Xiaolin 《Annals of microbiology》2019,69(5):553-565

Here, we investigated the influence of Chinese white truffle (Tuber panzhihuanense) symbioses on the microbial communities associated with Corylus avellana during the early development stage of symbiosis. The microbial communities associated with ectomycorrhizae, and associated with roots without T. panzhihuanense colonization, were determined via high-throughput sequencing of bacterial 16S rRNA genes and fungal ITS genes. Microbial community diversity was higher in the communities associated with the ectomycorrhizae than in the control treatment. Further, bacterial and fungal community structures were different in samples containing T. panzhihuanense in association with C. avellana compared to the control samples. In particular, the bacterial genera Rhizobium, Pedomicrobium, and Herbiconiux were more abundant in the ectomycorrhizae, in addition to the fungal genus Monographella. Moreover, there were clear differences in some physicochemical properties among the rhizosphere soils of the two treatments. Statistical analyses indicated that soil properties including exchangeable magnesium and exchangeable calcium prominently influenced microbial community structure. Lastly, inference of bacterial metabolic functions indicated that sugar and protein metabolism functions were significantly more enriched in the communities associated with the ectomycorrhizae from C. avellana mycorrhized with T. panzhihuanense compared to communities from roots of cultivated C. avellana without T. panzhihuanense. Taken together, these results highlight the interactions among ectomycorrhizal fungi, soil properties, and microbial communities that are associated with host plants and further our understanding of the ecology and cultivation of the economically important T. panzhihuanense truffles.

  相似文献   

20.
Seasonal shifts in rhizosphere microbial populations were investigated to follow the influence of plant developmental stage. A field study of indigenous microbial rhizosphere communities was undertaken on pea (Pisum satvium var. quincy), wheat (Triticum aestivum var. pena wawa) and sugar beet (Beta vulgaris var. amythyst). Rhizosphere community diversity and substrate utilization patterns were followed throughout a growing season, by culturing, rRNA gene density gradient gel electrophoresis and BIOLOG. Culturable bacterial and fungal rhizosphere community densities were stable in pea and wheat rhizospheres, with dynamic shifts observed in the sugar beet rhizosphere. Successional shifts in bacterial and fungal diversity as plants mature demonstrated that different plants select and define their own functional rhizosphere communities. Assessment of metabolic activity and resource utilization by bacterial community-level physiological profiling demonstrated greater similarities between different plant species rhizosphere communities at the same than at different developmental stages. Marked temporal shifts in diversity and relative activity were observed in rhizosphere bacterial communities with developmental stage for all plant species studied. Shifts in the diversity of fungal and bacterial communities were more pronounced in maturing pea and sugar beet plants. This detailed study demonstrates that plant species select for specialized microbial communities that change in response to plant growth and plant inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号