首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bioleaching of zinc sulfide concentrate by Thiobacillus ferrooxidans   总被引:2,自引:0,他引:2  
The kinetics of the bioleaching of ZnS concentrate by Thiobacillus ferrooxidans was studied in a well-mixed batch reactor. Experimental studies were made at 30 degrees C and pH 2.2 on adsorption of the bacteria to the mineral, ferric iron leaching, and bacterial leaching. The adsorption rate of the bacteria was fairly rapid in comparison with the bioleaching rate, indicating that the bacterial adsorption is at equilibrium during the leaching process. The adsorption equilibrium data were correlated by the Langmuir isotherm, which is a useful means for predicting the number of bacteria adsorbed on the mineral surface. The rate of chemical leaching varied with the concentration of ferric iron, and the first-order reaction rate constant was determined. Bioleaching in an iron-containing medium was found to take place by both direct bacterial attack on the sulfide mineral and indirect attack via ferric iron. In this case, the ferric iron was formed from the reaction product (ferrous iron) through the biological oxidation reaction. To develop rate expressions for the kinetics of bacterial growth and zinc leaching, the two bacterial actions were considered. The key parameters appearing in the rate equations, the growth yield and specific growth rate of adsorbed bacteria, were evaluated by curve fitting using the experimental data. This kinetic model allowed us to predict the liquid-phase concentrations of the leached zinc and free cells during the batch bioleaching process.  相似文献   

2.
Selective Adhesion of Thiobacillus ferrooxidans to Pyrite   总被引:3,自引:2,他引:3       下载免费PDF全文
Bacterial adhesion to mineral surfaces plays an important role not only in bacterial survival in natural ecosystems, but also in mining industry applications. Selective adhesion was investigated with Thiobacillus ferrooxidans by using four minerals, pyrite, quartz, chalcopyrite, and galena. Escherichia coli was used as a control bacterium. Contact angles were used as indicators of hydrophobicity, which was an important factor in the interaction between minerals and bacteria. The contact angle of E. coli in a 0.5% sodium chloride solution was 31°, and the contact angle of T. ferrooxidans in a pH 2.0 sulfuric acid solution was 23°. E. coli tended to adhere to more hydrophobic minerals by hydrophobic interaction, while T. ferrooxidans selectively adhered to iron-containing minerals, such as pyrite and chalcopyrite. Ferrous ion inhibited the selective adhesion of T. ferrooxidans to pyrite competitively, while ferric ion scarcely inhibited such adhesion. When selective adhesion was quenched by ferrous ion completely, adhesion of T. ferrooxidans was controlled by hydrophilic interactions. Adhesion of E. coli to pyrite exhibited a liner relationship on langmuir isotherm plots, but adhesion of T. ferrooxidans did not. T. ferrooxidans recognized the reduced iron in minerals and selectively adhered to pyrite and chalcopyrite by a strong interaction other than the physical interaction.  相似文献   

3.
Rate equations and kinetic parameters were obtained for various reactions involved in the bacterial oxidation of pyrite. The rate constants were 3.5 μM Fe2+ per min per FeS2 percent pulp density for the spontaneous pyrite dissolution, 10 μM Fe2+ per min per mM Fe3+ for the indirect leaching with Fe3+, 90 μM O2 per min per mg of wet cells per ml for the Thiobacillus ferrooxidans oxidation of washed pyrite, and 250 μM O2 per min per mg of wet cells per ml for the T. ferrooxidans oxidation of unwashed pyrite. The Km values for pyrite concentration were similar and were 1.9, 2.5, and 2.75% pulp density for indirect leaching, washed pyrite oxidation by T. ferrooxidans, and unwashed pyrite oxidation by T. ferrooxidans, respectively. The last reaction was competitively inhibited by increasing concentrations of cells, with a Ki value of 0.13 mg of wet cells per ml. T. ferrooxidans cells also increased the rate of Fe2+ production from Fe3+ plus pyrite.  相似文献   

4.
The oxidation of a pure pyrite by Thiobacillus ferrooxidans is not really a constant phenomenon; it must be considered to be more like a succession of different steps which need characterization. Electrochemical studies using a combination of a platinum electrode and a specific pyrite electrode (packed-ground-pyrite electrode) revealed four steps in the bioleaching process. Each step can be identified by the electrochemical behavior (redox potentials) of pyrite, which in turn can be related to chemical (leachate content), bacterial (growth), and physical (corrosion patterns) parameters of the leaching process. A comparison of the oxidation rates of iron and sulfur indicated the nonstoichiometric bacterial oxidation of a pure pyrite in which superficial phenomena, aqueous oxidation, and deep crystal dissolution are successively involved.  相似文献   

5.
Leaching bacteria such as Thiobacillus ferrooxidans attach to pyrite or sulfur by means of extracellular polymeric substances (EPS) (lipopolysaccharides). The primary attachment to pyrite at pH 2 is mediated by exopolymer-complexed iron(III) ions in an electrochemical interaction with the negatively charged pyrite surface. EPS from sulfur cells possess increased hydrophobic properties and do not attach to pyrite, indicating adaptability to the substrate or substratum.  相似文献   

6.
In spite of the environmental and commercial interests in the bacterial leaching of pyrite, two central questions have not been answered after more than 35 years of research: does Thiobacillus ferrooxidans enhance the rate of leaching above that achieved by ferric sulfate solutions under the same conditions, and if so, how do the bacteria affect such an enhancement? Experimental conditions of previous studies were such that the concentrations of ferric and ferrous ions changed substantially throughout the course of the experiments. This has made it difficult to interpret the data obtained from these previous works. The aim of this work was to answer these two questions by employing an experimental apparatus designed to maintain the concentrations in solution at a constant value. This was achieved by using the constant redox potential apparatus described previously (P. I. Harvey, and F. K. Crundwell, Appl. Environ. Microbiol. 63:2586–2592, 1997; T. A. Fowler, and F. K. Crundwell, Appl. Environ. Microbiol. 64:3570–3575, 1998). Experiments were conducted in both the presence and absence of T. ferrooxidans, maintaining the same conditions in solution. The rate of dissolution of pyrite with bacteria was higher than that without bacteria at the same concentrations of ferrous and ferric ions in solution. Analysis of the dependence of the rate of leaching on the concentration of ferric ions and on the pH, together with results obtained from electrochemical measurements, provided clear evidence that the higher rate of leaching with bacteria is due to the bacteria increasing the pH at the surface of the pyrite.  相似文献   

7.
Available cultures of Thiobacillus ferrooxidans were found to be contaminated with bacteria very similar to Thiobacillus acidophilus. The experiments described were performed with a homogeneous culture of Thiobacillus ferrooxidans.Pyrite (FeS2) was oxidized by Thiobacillus ferrooxidans grown on iron (Fe2+), elemental sulphur (So) or FeS2.Evidence for the direct utilization of the sulphur moiety of pyrite by Thiobacillus ferrooxidans was derived from the following observations: a. Known inhibitors of Fe2+ and So oxidation, NaN3 and NEM, respectively, partially abolished FeS2 oxidation. b. A b-type cytochrome was detectable in FeS2-and So-grown cells but not in Fe2+-grown cells. c. FeS2 and So reduced b-type cytochromes in whole cells grown on So. d. CO2 fixation at pH 4.0 per mole of oxygen consumed was the highest with So, lowest with Fe2+ and medium with FeS2 as substrate. e. Bacterial Fe2+ oxidation was found to be negligible at pH 5.0 whereas both FeS2 and So oxidation was still appreciable above this pH. f. Separation of pyrite and bacteria by means of a dialysis bag caused a pronounced drop of the oxidation rate which was similar to the reduction of pyrite oxidation by NEM; indirect oxidation of the sulphur moiety by Fe3+ was not affected by separation of pyrite and bacteria.Bacterial oxidation and utilization of the sulphur moiety of pyrite were relatively more important with increasing pH.  相似文献   

8.
The effect of cinnabar on pyrite oxidation by mercury-sensitive and mercury-resistant strains of Thiobacillus ferrooxidans was investigated by using percolation columns. Mercury-resistant strains oxidized pyrite in pyrite-cinnabar mixtures (1 and 10%, wt/wt), whereas a mercury-sensitive strain did not. Elemental mercury was produced by the mercury-resistant strains growing in the pyrite-cinnabar mixtures in percolation columns and in flasks containing cinnabar only. Manometric experiments showed that cinnabar had little effect on oxygen uptake of mercury-sensitive or mercury-resistant cells growing on ferrous sulfate, pyrite, or pyrite-ferrous sulfate mixtures. In addition, shake flask leaching experiments showed that cinnabar had little effect on pyrite oxidation at 1% (wt/wt) but inhibited growth of mercury-sensitive and mercury-resistant strains at 10%. Mercury-resistant strains were unable to grow on cinnabar as an energy source.  相似文献   

9.
Molybdenum Oxidation by Thiobacillus ferrooxidans   总被引:2,自引:1,他引:1       下载免费PDF全文
Thiobacillus ferrooxidans AP19-3 oxidized molybdenum blue (Mo5+) enzymatically. Molybdenum oxidase in the plasma membrane of this bacterium was purified ca. 77-fold compared with molybdenum oxidase in cell extract. A purified molybdenum oxidase showed characteristic absorption maxima due to reduced-type cytochrome oxidase at 438 and 595 nm but did not show absorption peaks specific for c-type cytochrome. The optimum pH of molybdenum oxidase was 5.5. The activity of molybdenum oxidase was completely inhibited by sodium cyanide (5 mM) or carbon monoxide, and an oxidized type of cytochrome oxidase in a purified molybdenum oxidase was reduced by molybdenum blue, indicating that cytochrome oxidase in the enzyme plays a crucial role in molybdenum blue oxidation.  相似文献   

10.
Current technologies for removal and recovery of both toxic and industrial interest metals usually produce wastes with high concentrations of those substances. They are an important source of environmental pollution, specially when they contain heavy metals. This is one of the most important environmental problems, and of the most difficult to solve. So far, there have been a number of studies considering the possibility of removing and recovering heavy metals from diluted solutions. These are due, principally, because of the commercial value of some metals as well as the environmental impact caused by them. The traditional methods for removing have several disadvantages when metals are present in concentrations lower than 100?mg/l. Biosorption, which uses biological materials as adsorbents, has been considered as an alternative method. In this work, several variables that affect the capacity for copper biosorption by T. ferrooxidans have been studied. Particularly, the effect of pH, chemical pretreatment, biomass concentration and temperature have been considered. Results indicate that a capacity as high as 119?mg of Cu/g of dry biomass can be obtained at a temperature of 25?°C.  相似文献   

11.
Chromium(VI) was reduced by Thiobacillus ferrooxidans grown with elemental sulphur as the sole energy source. Chromium(VI) reduction (as high as 2000 M), was due to the presence of sulphite and thiosulphate, among others with high reducing power which was generated during the sulphur oxidation by the bacteria. Therefore, Thiobacillus ferrooxidans could be used to treat chromium(VI)-containing industrial effluents.  相似文献   

12.
氧化亚铁硫杆菌的形态及对Fe2+的氧化研究   总被引:6,自引:0,他引:6  
在纯培养的条件下,对江西德兴铜矿酸性矿坑水中分离出的一株氧化亚铁硫杆菌(Thiobacillus ferrooxidans)的细胞形态、生长条件以及对Fe2 的氧化进行了初步研究。透射电子显微镜检查的结果表明,其成熟菌体大小均一,有较好的运动性;采用光学显微镜对微生物进行菌群观测和利用血小板计数器法对细菌计数的结果表明,在摇床转速为160r/min的条件下,T.f.菌在9K液体培养基中最适生长条件为温度30℃左右,最佳初始pH 2.0;用重铬酸钾滴定法测定铁的结果表明,在摇床转速为160r/min的条件下,pH值1.7,温度30℃时T.f.菌对Fe2 的氧化速率最大,约为0.58g/L·h。  相似文献   

13.
Summary In the presence of iron, which is always associated with natural sulphide ores, the percentages of copper dissolution in the bioleaching of covellite were 34 and 45 % when Thiobacillus thiooxidans and Thiobacillus ferrooxidans were used together and when an indirect bioleaching with attached bacteria was performed respectively. In the latter, the percentage of copper dissolution was still higher than the percentages obtained with pure cultures (36 % with a T. thiooxidans culture and 40 % with a T. ferrooxidans culture).  相似文献   

14.
Summary Biochemical removal of rust from iron surfaces has been investigated. By immersing a rusted iron plate in the culture medium of an iron-oxidizing bacterium, Thiobacillus ferrooxidans, iron adjacent to the rust was dissolved and the rust was peeled off. Since the amount of dissolved iron per unit iron plate surface area correlated with the concentration of ferric iron in the culture medium, the formation of ferric iron is probably involved in dissolving the iron as is the case for bacterial leaching. In the present study, rust removal in a “continuous” system in which the culture medium was circulated from the fermentor to the rust removal vessel and back again to the fermentor, has also been investigated. Although growth inhibition was observed with the formation of ferric iron precipitates during the operation in this system, it was possible to prevent this precipitation by lowering the pH of the medium during the mixed cultivation of T. ferrooxidans and a sulfur-oxidizing bacterium, T. thiooxidans.  相似文献   

15.
Summary Direct bioleaching (no iron(II) present) by Thiobacillus ferrooxidans mainly occurs on the surface of the very insoluble sulphides but is more important in solution when the sulphides are more soluble. In this case, Thiobacillus thiooxidans, normally not able to leach directly insoluble sulphides, has an effective leaching action.  相似文献   

16.
Bacterial dissolution of pyrite by Thiobacillus ferrooxidans   总被引:5,自引:0,他引:5  
The kinetics of the dissolution of pure pyrite (FeS2) particles by Thiobacillus ferrooxidans were studied both theoretically and experimentally. Adsorption and dissolution experiments were carried out at 30 °C and pH=2, by using a batch reactor. The adsorption process of T. ferrooxidans to pyrite surface was rapid in comparison with the bacterial dissolution process. The experimental results for the adsorption equilibrium were well correlated by the Langmuir type isotherm. The growth rate of adsorbed bacteria was found to be proportional to the product of the number of adsorbed cells and the fraction of solid surface unoccupied by cells. A new kinetic model for the bacterial dissolution was presented, and shown to correlate well with the experimental data for the rate of bacterial dissolution and for the time variation in the number of cells in the liquid phase. The specific growth rate of adsorbed bacteria was also evaluated.List of Symbols f weight fraction of iron in pyrite - K A m3/cells equilibrium constant for cell adsorption - R A cells/d m3-mixture growth rate of bacteria adsorbed on solid surface - R L cells/d m3-mixture growth rate of free bacteria in the liquid phase - t d time - V m3 volume of solid-liquid mixture - W kg weight of pyrite - W 0 kg initial weight of pyrite - X A cells/kg-solid number of adsorbed cells on solid surface - X Am cells/kg-solid maximum adsorption capacity - X L cells/m3-liquid number of free cells existing in the liquid phase - X T cells/m3-mixture total number of cells - X TO cells/m3 initial total number of cells - Y A cells/kg-FeS2 growth yield of adsorbed bacteria - Y L cells/kg-Fe2+ growth yield of free bacteria - [Fe] T kg/m3-liquid concentration of total iron in the liquid phase - fraction of pyrite dissolved - V fraction of adsorption sites unoccupied by cells - A d–1 specific growth rate of adsorbed bacteria - L d–1 specific growth rate of free bacteria - volume fraction of solid particles in solid-liquid mixture  相似文献   

17.
Kinetics of Iron Oxidation by Thiobacillus ferrooxidans   总被引:2,自引:0,他引:2       下载免费PDF全文
A statistical relationship between the rate of ferric ion production by a strain of Thiobacillus ferrooxidans and various levels of cell concentration, Fe2+ concentration, Na+ concentration, and temperature was studied by a direct colorimetric method at 304 nm. The relationship was linear (90 to 93%), cross-product (3 to 4%), and quadratic (1 to 2%). The levels of cell concentration and Fe2+ concentration and their respective interactions with one another and the other factors had the most significant effects on the regression models. The solution of the quadratic response surface for optimum oxidation was a saddle point, and the predicted critical levels of temperature, cell concentration, Fe2+ concentration, and Na+ concentration ranged between −6 and 2°C, 0.43 and 0.62 mg/ml, 72 and 233 mM, and 29.6 mM, respectively.  相似文献   

18.
Thiobacillus ferrooxidans was able to grow under anaerobic conditions on copper sulphide with ferric ion as the electron acceptor. The dissolution of covellite under these conditions (68% after 35 days) was higher than values observed aerobically in cultures with similar media composition and almost as high as under aerobic conditions without iron. From these results we propose a mechanism for anaerobic bioleaching of covellite in the presence of ferric iron and speculate that it may occur in leach dumps where the oxygen concentration is, as reported elsewhere, very low. Received: 3 September 1996 / Received revision: 13 January 1997 / Accepted: 24 January 1997  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号