首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
槐树试管苗在移栽驯化过程中叶表面结构的扫描电镜观察   总被引:5,自引:1,他引:5  
用扫描电子显微镜观察了槐树试管试管苗在移栽驯化及大田生长过程中叶表面结构的变化。结果表明:随着移栽驯化及大田生长过程的延长,表皮细胞周缘突起增多,细胞之间相互嵌合,连结紧密;表皮蜡质结晶密度、长度及蜡质厚度逐渐增加,其结晶由“星”状转化为针状及棒状;气孔器密度及气孔开度由大到小,气孔器下陷程度增加。显示出试管苗在移栽驯化及田间生长过程中,叶表面结构对环境的适应性,其主要变化向着防止水分过度散失的方  相似文献   

2.
Summary Vitrification of plants in vitro is a physiological abnormality of tissue-cultured plants which causes significant losses in the micropropagation industry. Vitrified plants are waterlogged but the position of water within plants has not been identified. Nuclear magnetic resonance (NMR) imaging of normal tissue-cultured, vitrified tissue-cultured, and glasshouse-grown leaves ofGypsophila paniculata showed the distribution of water within the leaves. Normal tissue-cultured and glasshouse-grown leaves had a high concentration of water within leaf vascular bundles and lower concentrations elsewhere. In contrast, vitrified leaves had a relatively even distribution of high water concentration throughout the leaves. When imaging parameters were changed, so that only water associated with cell membranes was shown, the images of normal tissue-cultured and glasshouse-grown leaves did not change. However, the image of the vitrified leaves showed a general lowering of intensity across the whole of the leaf. The appearance of the NMR images, together with those obtained by light microscopy, suggest that the excess water associated with vitrified plants is located in the intercellular air spaces. The blockage of these spaces may lead to a cycle of perturbations in the plant's physiology culminating in the development of vitrification.Abbreviation NMR nuclear magnetic resonance  相似文献   

3.
A large numar of plantlets were obtained from cotyledon explants of Sophom japonica L. cultured in vitro. They could be classified into 3 kinds according to their morphological characteristics, viz. the normal plantlets, the hyperhydric planfiets,and the intermediate state between the two or the sub-hyperhydric type. The free water content was more than 79% in the hyperhydric shoots,and 70% in the sub-hyperhydric shoots,while less than 50% in the normal shoots. The surface anatomy of normal, sub-hyperhydric and hyperhydric stems and leaves of the plantlets were compared by scanning electron microscopy. The surface structure of the normal plantlets was similar to those found in field-grown plants,but great change occurred in that of hyperhydric and the sub-hyperhydric plantlets. The stems and leaves surface of the hyperhydric and sub-hyperhydric plantlets appeared to be uneven, wrinkled, brittle and translucent and besides the leaves were thick, curled with a reduced surface area. There was little or no epicuticular wax on the surface of epidermal cells which had irregular shapes and patterns. All leaves were amphistomatic and the stomatal density, size and degree of opening were obviously bigger in the sub-hyperhydric and hyperhydric leaves than in the normal ones. Normal stomata had kidney-shaped guard cells and resembled closely those found in the feild-grown plants, whereas abnormal stomata had deformed guard cells. All of the morphological characteristics mentioned above indicated that the sub-hyperhydric and hyperhydric shoots bended to lose their water easily and resulted in desiccation, which might be one of the major causes of failure to transfer sub-hyperhydric and hyperhydric plantlets to soil.  相似文献   

4.
应用光学显微镜和扫描电子显微镜对29种野豌豆属植物叶表皮微形态特征进行了观察。结果显示:叶表皮细胞形状有无规则形和多边形2种,垂周壁式样有深波状、浅波状和平直-弓形;表皮角质层纹饰微形态多样,大多数植物叶片表面不具有腺毛或仅中脉有,少数植物叶片表面具腺毛;部分叶表皮上有柔毛,少数植物无毛。气孔器存在于上表皮、下表皮、或上下表皮均有,形状为椭圆形、卵圆形,均为无规则型。野豌豆属植物叶表皮的这些微形态特征,在属内组间没有明确的规律性,但可为探讨该属种间的分类学及亲缘关系提供依据。  相似文献   

5.
Cotton leaves are more physiologically active than the bractand the capsule wall of the fruiting structures. To elucidatethe disparities in their physiological behaviour, epidermalcell density, stomatal index, stomatal size, trichome densityand type, and epicuticular wax ultrastructure of cotton leaf,bract and capsule wall were delineated using scanning electronmicroscopy (SEM). The epidermal cells of the outer periclinalwalls on both surfaces of the leaf and bract were raised andconvex. Conversely, the capsule wall epidermal cells were polygonalwith flat outer periclinal walls. The stomatal complex in theleaf and bract was paracytic, whereas in the capsule wall thestomatal complex was anomocytic. The adaxial and abaxial stomataof the leaf were coplanar to the epidermal surface, as opposedto the raised adaxial stomata on the bract. On the contrary,the stomata on the capsule wall surface appeared to be slightlysunken. Furthermore, the capsule wall stomata were larger thanthe stomata on either surface of both the leaf and the bract.The stomatal index was greater on the abaxial surfaces of theleaf and the bract (18.4 and 9.4, respectively) than their correspondingadaxial surfaces (14.4 and 4.7, respectively). Leaves had thehighest stomatal index followed by the bract and the capsulewall. The indumentum consisted of glandular and nonglandulartrichomes, the density of which was greater on the abaxial surfacesthan on the adaxial surfaces of the leaf and bract. The capsulewall indumentum lacked nonglandular trichomes. Epicuticularwax occurred in the form of striations. However, the striationpattern varied among the organs. This study clearly illustratesmorphological disparities in the epidermal features of leaf,bract and capsule wall, helping to explain their physiologicaldivergence. Copyright 2000 Annals of Botany Company Gossypium hirsutum, epicuticular wax, raised stomata, scanning electron microscopy, stomatal index, trichomes  相似文献   

6.
Summary Scanning electron microscopy, light microscopy, and gravimetric analysis was used to evaluate stomatal function, epicuticular wax, and the stem-root transition region of grape (Vitis sp. ‘Valiant’) plantlets grownin vitro, polyethylene glycoltreatedin vitro, and greenhouse-grown plants. Scanning electron microscopic studies of leaf surfaces ofin vitro-grown plants showed widely open stomata as compared to leaf stomata of polyethylene glycol-treatedin vitro-cultured and greenhouse-grown plants. Ultrastructurally, leaf epicuticular wax ofin vitro plants was less dense than in their polyethylene-treated and greenhouse counterparts. Quantitatively,in vitro-grown plants had reduced epicuticular was as compared to polyethylene glycol-treated and greenhouse-grown plants. Light microscopic studies showed no obvious differences in the vascular connections in the stem-root transition region ofin vitro-cultured, polyethylene glycol-treatedin vitro-cultured, and greenhouse-grown plants. It is therefore likely that the rapid wilting and desiccation observed after transplantingin vitro grape plantlets is due to their defective stomatal function and reduced epicuticular wax and may not be due to poor water transport associated with vascular connection.  相似文献   

7.
Node cultures ofGypsophila paniculata showed vitrified growth when cultured under standard conditions, resulting in poor survival of tissue culture derived plants. The deviant growth pattern appeared to be determined in the lag phase of the cultures. A limited evaporation period in this stage induced normal growth. Re-establishment of high relative humidity and poorer gas exchange thereafter did not lead to vitrified growth. Vitrification was also depressed when evaporation was continued during the whole culture period, but shorter plantlets resulted. A simple adaptation of the plastic lid that is commonly used in micropropagation, allowed controlled and contamination-free evaporation.  相似文献   

8.
应用光学显微镜和扫描电子显微镜对29种野豌豆属植物叶表皮微形态特征进行了观察。结果显示:叶表皮细胞形状有无规则形和多边形2种,垂周壁式样有深波状、浅波状和平直-弓形;表皮角质层纹饰微形态多样,大多数植物叶片表面不具有腺毛或仅中脉有,少数植物叶片表面具腺毛;部分叶表皮上有柔毛,少数植物无毛。气孔器存在于上表皮、下表皮、或上下表皮均有,形状为椭圆形、卵圆形,均为无规则型。野豌豆属植物叶表皮的这些微形态特征,在属内组间没有明确的规律性,但可为探讨本属种间的分类学及亲缘关系提供依据。  相似文献   

9.
Polyethylene glycol was added to the rooting medium ofmicropropagated grape shoots to induce water stress. At the end of the rooting stage, plantlets treated with 2% polyethylene glycol were compared with untreated control plantlets and greenhouse-grown plants. Leaves of treated plantlets had the highest deposition of epicuticular wax, followed by those of the greenhouse and control. Stomatal index did not vary among treatments. However, differences in leaf epidermal cell configuration were observed among treatments. The morphological changes of treated plantlets, including substantial deposition of epicuticular wax and modified leaf surface anatomy were associated with increasedex vitro survival after four weeks in the greenhouse.  相似文献   

10.
The surface anatomy of normal and vitreous leaves of plantlets obtained from Datura insignis Barb Rodr nodal segment cultures was compared using scanning electron microscopy. Normal and vitrified leaves are similar in several ways. They are both amphistomatic, and have similar distributions of glandular and non-glandular trichomes. Stomata have similar length, diameter and distribution in normal and vitreous plants. Immature stomata, which have closed pores, and plugged stomata, which contain an amorphous material between their guard cells, occur in both normal and vitrified leaves. Normal and vitreous leaves differ in the frequency of normal and abnormal stomata. Normal stomata have kidney-shaped guard cells and resemble closely those found in field-grown plants, whereas abnormal stomata have deformed guard cells. Normal stomata represent approximately 80% of the total number of stomata in normal leaves, but only 7% of the total number of stomata in vitreous leaves. Abnormal stomata represent 90% of the total number in vitreous leaves. The deformation of guard cells could possibly be a mechanical impediment to stomatal function.  相似文献   

11.
槐树试管正常苗与超度含水态苗茎叶的比较形态学研究   总被引:3,自引:0,他引:3  
槐树(Sophora japonica L.)子叶经培养获得了大量的试管苗,依其形态正常与否可将其分为正常苗、超度含水态苗和介于二者之间的过度含水态苗。其自由水含量明显不同,正常苗低于50%,超度含水态苗高于79%,而过度含水态苗约为70%。以扫描电镜对其茎、叶的形态学结构进行了比较研究,结果表明:正常苗茎、叶表皮结构基本类似于实生苗,而过度及超度含水态苗的茎、叶表皮层结构变异较大。主要表现在其表面凹凸不平,表皮层外稀有或无蜡质存在,表皮细胞形状及排列不规则,叶片近、远轴两面气孔器密度、大小及开度均较正常苗显著增大;保卫细胞形态、结构异常。上述特征,均显示出槐树试管过度及超度含水态苗易失水干化,这可能是其在移栽过程中难以成活的主要原因之一。  相似文献   

12.
Summary The anatomy of normal and hyperhydric in vitro shoots and leaves from micropropagated simmondsia chinensis (Link.) Schn. (jojoba) was compared with that of seedlings (control plants). In vitro normal plantlets displayed good development and survived during the acclimatization stage. In vitro hyperhydric plantlets presented numerous anatomical defects, such as hypertrophy of the mesophyll and of the stem cortex, malformed non-functional stomata, epidermal discontinuity, and xylem hypolignification; they did not survice acclimatization. The study of the anatomical features of in vitro jojoba shoots and leaves allowed determination of the structural condition of the plantlets and prediction of which plantlet would survive the critical acclimatization stage.  相似文献   

13.
《植物生态学报》2016,40(11):1189
Aims Leaf epidermal micromorphology is an important adaptation of desert plants to arid environment. A micromorphological analysis of leaf epidermal tissue of desert plants was carried out in order to obtain qualitative and quantitative data on epidermal characteristics and to evaluate the long-term adaptive strategy of desert plants to aridity in desert conditions.
Methods The leaf (or assimilation branches) materials were sampled for more than 200 natural populations of 117 desert plant species from 74 genera and 28 families, in arid and semi-arid areas of China. The characteristics of leaf epidermal micromorphology of desert plants were then measured by scanning electron microscopy (SEM). Characteristics of epidermal cell, trichome, stomatal, cuticular wax on adaxial and abaxial surface are presented.
Important findings Leaf epidermal micromorphology of desert plants showed abundant diversity in different classification levels. The desert plants adapted to environmental stress can be divided into 11 basic morphological types according to the structure of the epidermis, and their characteristics of leaf epidermal morphology were classfied into 6 main types according to the relationships between stress resistance and structural characteristics of epidermal micromorphology and their appendages. The main epidermal appendages of desert plants (such as trichome, cuticular wax) and epidermal structures (concave-convex and papillary structure, stomata) could cooperate with each other to improve the resistance of desert plants to drought and other adverse environmental stress by resisting the strong light and reducing leaf transpiration.  相似文献   

14.
为了探讨荒漠植物叶片表皮微形态结构对长期荒漠环境的适应特征及其分类学意义, 应用扫描电镜对中国干旱半干旱荒漠区28科74属117种200多个自然居群的植物叶片(或同化枝)表皮微形态进行了研究。荒漠植物叶(或同化枝)表皮的基本特征是: 表皮附属物相当丰富, 包括大量的表皮绒毛、角质膜蜡质片层或晶体颗粒、表面瘤状或疣状突起以及相对下陷且密度较低的气孔器。对表皮微形态结构及附属物组成进行对比分析, 将荒漠植物粗分为11种基本类型, 包括表皮完全被形态各异的蜡质层或表皮毛覆盖、不同形态类型的表皮毛和蜡质层结合、蜡质层与不同分布类型的气孔器或表皮毛结合, 以及各种突起的表皮细胞与蜡质层的结合等。根据抗逆所依赖的表皮及其附属物微形态结构, 将荒漠植物适应环境胁迫的叶片表皮微形态分为6种主要类型, 它们分别依赖于表皮毛、角质层蜡质、表皮凹凸结构、表面突起、混生的附属物以及上下表皮异化特征。荒漠植物叶表皮微形态结构的适应特征是通过表皮附属物(绒毛和角质膜蜡质层)与表皮结构(凹凸、乳突和气孔器)的相互协调作用, 共同抵御强光、降低叶片的蒸腾来提高植物对干旱等不利环境的抗性。该研究在一定程度上阐明了荒漠植物对逆境的适应机理及其演化趋势, 并为优良固沙植物的筛选提供了理论依据。  相似文献   

15.
酸枣叶表皮微形态对不同生态环境的适应特征   总被引:1,自引:0,他引:1  
朱广龙  邓荣华  魏学智 《生态学报》2016,36(16):5193-5203
以生长于烟台—石家庄—宁夏—新疆不同生境形成的自然梯度干旱环境中的酸枣(Ziziphus jujuba var.spinosas)为材料,应用扫描电镜和能谱分析研究酸枣叶表皮微形态对不同自然梯度干旱环境的适应特征。结果表明:酸枣叶片的上、下表皮都有表皮毛着生且在叶脉处分布浓密;叶片表层覆盖有较厚的角质层和蜡质并形成突起,其主要成分为C、O、Ca三种元素;叶片表面气孔数量平均40个/视野且按一定规律分布。不同生境中酸枣叶片表面都分布有大量的晶体,且晶体的形态和组成成分表现出一定的生态适应特征。晶体的形状多样,有正六棱体、长六棱体、不规则片状、正方体、棒状晶体或针状,晶体的分布方式有单晶和簇晶。从烟台到新疆随干旱梯度的加剧,酸枣叶片表皮毛逐渐增多,气孔数量减少,气孔腔下陷明显,有助于植株减少蒸腾保水抗旱;晶体的体积逐渐变小,数量增多,密度增大,提升了叶片硬度及抗旱性;酸枣叶片晶体的主要成分为C、O、Ca三种元素,且随生境干旱加剧,C元素的含量逐渐增加,O和Ca元素含量依次减少,此外宁夏的晶体中还含有Si元素,进一步提升了叶片的机械性能。酸枣叶表皮微形态中表皮毛、角质层与蜡质、气孔、晶体等在形态结构、生物功能和组成成分上特异性的变化是其长期生存于不同梯度干旱生境的生态适应特征。  相似文献   

16.
田琴  段涵宁  王云强  李海涛  李璐 《广西植物》2022,42(10):1661-1674
为澄清仙茅科属间界限不清的分类学问题,该文以中国仙茅科3属5种植物为研究对象,利用显微镜、扫描电镜和石蜡切片技术,观察了其叶形态、叶表皮显微特征和叶解剖特征。结果表明:(1)叶形态有小型平整叶、中型波状叶、大型折扇状叶三种。(2)叶表皮毛状体结构为单细胞单列,可分为长柔毛、糙伏毛和星状柔毛三类。(3)叶表皮细胞有六边形和五边形,气孔为平列型和椭圆形,气孔大小和气扎密度呈反比。(4)叶表皮蜡质纹饰有光滑、颗粒、屑状和壳状四类。(5)叶中脉横切面分为平整型和龙骨型,维管束有圆形和椭圆形,叶表皮厚度与表皮细胞具有正相关性。对5种植物的叶形态和叶解剖特征比较分析认为,一些特征组合有助于理解仙茅科属间的亲缘关系和物种鉴定,支持大叶仙茅属独立于仙茅属。  相似文献   

17.
Germination, penetration and sporulation of Cercospora henningsii (Allesch.) on cassava leaves were studied by scanning electron microscopy. Conidia started to germinate 9 h postinoculation producing one to two germ tubes. The germ tubes entered the leaf tissue through the abaxial surface by direct penetration of the epidermis without forming appressoria. The cassava leaf is characterized by its papillose epidermis on the abaxial surface. The penetrations occurred at smooth areas of the leaf epidermis between the papillae. The germ tubes did not enter stomata even when they passed over stomatal openings. Leaf spots started to appear 9 days after the inoculation (dpi), and the emergence of conidia occurred 14 dpi. The symptoms appeared first on the abaxial leaf surface, followed 2 days later on the adaxial. Conidia emerged in clusters through ruptured epidermis on both sides of the leaves. Conidia emerged also through the epidermal papillae and the leaf veins. Even though small groups of conidia emerged through stomata also, emergence through stomata appeared to be random rather than a preferred route. Each conidium was born on a short conidiophore with a swollen base.  相似文献   

18.
Experiments were designed to assess the capacity of an in vitro cultured CAM plant to control water loss and to examine the response of their stomata to various factors. Detached leaves of micropropagated Agave tequilana plants lost water at similar rates as did field-grown plantlets when dehydrated in air. This was consistent with the fact that stomata from micropropagated plants show similar morphology than field-grown plantlets. In addition, stomata from micropropagated plants responded to various factors in a manner similar to those from field-grown plantlets. It appears that in vitro culture does not affect the capacity of leaves to control water loss nor does it alters the nocturnal stomatal opening of this CAM plant.  相似文献   

19.
本文对组织培养过程中,槐树(Sophora japonica L.)再生植株正常苗和玻璃苗的叶、茎及茎端的解剖结构进行了比较研究。结果表明:正常苗结构基本类似于实生苗,玻璃苗结构变异较大;玻璃苗叶片变厚,表皮细胞形状不规则,气孔保卫细胞萎缩变形,叶肉无明显的栅栏组织与海绵组织分化,叶绿体含量较少,叶维管组织发育不良;茎横切面形状不规则,表皮上气孔数目较多,皮层厚角组织不明显,维营束大致分布成一轮,形成不规则维管柱;茎端分生组织细胞层数较少,不呈现典型的原套原体结构。  相似文献   

20.
Summary The Mme Isaac Pereire rose was investigated in an attempt to establish how micropropagated roses might best be weaned into normal growth conditions. Leaves of in vitro grown plants, weaned plants and the stock plant were studied, using light microscopy and different scanning and transmission electron microscopical techniques. Features that varied in the different growing conditions were leaf size and thickness, amount of wax, thickness of cuticle and external epidermal cell wall, number and aperture of the stomata, size of the epidermal cells, number of layers of the palisade cells, and size of the chloroplasts in the mesophyll. The rose in the present study had wax on the in vitro cultured plants; this wax was of similar ultrastructural appearance to that of the stock plant, even though in smaller quantities. Weaned plants had an intermediate amount of wax. The cuticle was thin, ranging from 0.04 m on plants growing in vitro to 0.3-0.6 m on weaned plants and stock plants. Stomata were always wide-open on leaves taken from cultures with a relative humidity of 100%. After four weeks in a humidity lowered to 85% stomata had closed.Abbreviations BAP 6-benzyl-aminopurine - CPD critical point drier - CTEM conventional transmission electron microscopy - NAA a-naphthaleneacetic acid - psi pounds per square inch - SEM scanning electron microscopy - TEM transmission electron microscopy  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号