首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Actinobacteria is a dominant phylum in saline soil and play important roles in the process of organic matter decomposition and biogeochemical cycling. In this study, we investigated the diversity and phylogeny of the haloalkaliphilic actinobacteria that inhabited the saline soil of Coastal Gujarat (India) using conventional and molecular approaches. The actinobacteria were diversified on the basis of their growth patterns, morphology, spore color and sugar utilization. The cultivated actinobacteria were genetically diverse, with the ability to grow at high salt concentrations. The salt resistance feature was widely distributed among the isolates and not confined to any particular phylogenetic cluster. The PCR -DGGE approach was used to assess molecular diversity and to mitigate the limitation of the 16S rRNA sequence approach. Reproducible band profiles confirmed that the PCR-DGGE provided an excellent tool for the 16S rDNA heterogeneity analysis. The migration behavior of the 16S rRNA genes on the DGGE gel suggested lack of correlation between the band numbers and α-diversity. The findings highlighted the trends associated with the microbial community and signify the role of the DGGE in distinguishing a group of species that exhibit 16S rRNA based phylogenetic relatedness with distinct phenotypic characters. Based on the 16S rRNA genes, the actinobacteria were identified as belong to Nocardiopsis, Brachybacterium, Streptomyces and Prauseria. Nocardiopsis was the most predominant actinobacterial genera. The study indicated that a combination of the conventional and molecular approaches could be highly significant in analyzing the diversity of the actinobacteria from the saline habitat.  相似文献   

2.
The actinobacterial community in rhizospheres of eaglewood (Aquilaria crassna Pierre ex Lec) was analyzed using culture-independent methods of RT-PCR and PCR DGGE of 16S rRNA gene. We conducted the experiments to investigate the difference in diversity and community structure of actinobacteria with respect to sampling sites and seasons and to determine effect of plant species on selection of rhizosphere community from different sampling sites. Total genomic DNA and RNA were extracted from rhizosphere soils collected from two plantations in Phetchabun province and one plantation in each Nakhonnayok province, Rayong province and Chiang Mai province of Thailand during dry and rainy seasons. The UPGMA dendrogram generated from DGGE fingerprints showed that the actinobacterial community was separated corresponding to sampling sites, suggesting sampling sites effect. The shift in community and diversity between two seasons was detected in all sampling sites. RNA-based analyses showed that several actinobacterial groups appeared to be ubiquitous but different in metabolic activity in different environments. Species diversity (S) and simple indexes (I) indicate the increase in species diversity of actinobacteria from all sampling sites in rainy season. Cloning and sequencing of 16S rRNA gene fragments obtained from DGGE bands revealed that 14 of 40 dominant species of actinobacteria in the rhizospheres of this plant belonged to uncultured actinobacteria. Besides the uncultured actinobacteria, Nocardioides sp., Streptomyces sp., Mycobacterium sp., Rhodococcus sp. and Actinoplanes sp. were indentified and frequently found more than other genera.  相似文献   

3.
The diversity and community structures of actinobacteria in saline sediments collected from Yunnan and Xinjiang Provinces, China, were investigated with cultivation and 16S rRNA gene analysis. A total of 163 actinobacterial isolates were obtained, and they were affiliated with the order Actinomycetales (distributed into five suborders: Streptosporangineae, Micrococcineae, Streptomycineae, Pseudonocardineae, and Glycomycineae). A total of 748 actinobacterial 16S rRNA gene clones were examined, and they could be classified into Actinomycetales, Acidimicrobiales, and unclassified actinobacteria. The Actinomycetales sequences were distributed into nine suborders: Streptosporangineae, Glycomycineae, Micromonosporineae, Pseudonocardineae, Corynebacterineae, Frankineae, Propionibacterineae, Streptomycineae, and Micrococcineae. The unclassified actinobacteria contained three new clusters at the level of subclass or order. Our 16S rRNA gene phylogenetic data indicated that actinobacterial communities were very diverse in the investigated saline sediments (salinity 0.4–11.6%) and some actinobacterial members may be halotolerant or halophilic. The actinobacterial community structures in the saline sediments were different from those in marine and freshwater environments. Our data have implications for a better understanding of the distribution of Actinobacteria in saline environments. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
大熊猫肠道放线菌的种群组成及多样性分析   总被引:1,自引:0,他引:1  
【目的】探究不同年龄、不同性别大熊猫肠道放线菌的多样性及群落结构,为寻找潜在产生活性化合物的放线菌资源提供理论依据。【方法】采用PCR-DGGE技术对大熊猫肠道放线菌进行分析,对电泳结果进行UPGMA聚类分析、主成分分析、生物多样性等多重比较。【结果】变性梯度凝胶电泳(DGGE)图谱显示,不同大熊猫肠道中放线菌的多样性及群落结构存在明显差异。随着年龄的增长,雌性大熊猫肠道中放线菌的多样性指数(H')和丰富度(S)逐渐减少,而雄性大熊猫肠道内放线菌的多样性指数(H')和丰富度(S)逐渐增多。不同个体的大熊猫肠道放线菌的群落结构存在明显差异,但相同性别之间的相似性很高。DGGE条带回收测序结果表明,获得的28条序列归属于10个放线菌属,其中链霉菌属(Streptomyces)为优势菌属,占总数的46%;北里孢菌属(Kitasatospora)、红球菌属(Rhodococcus)、棒杆菌属(Corynebacterium)、迪茨氏菌属(Dietziaceae)、大理石雕菌属(Marmoricola)、布登堡菌属(Beutenbergia)、微杆菌属(Microbacterium)、链嗜酸菌属(Streptacidiphilus)和芽生球菌属(Blastococcus)等为非链霉菌属,占总数的54%。【结论】大熊猫肠道内蕴藏着丰富的放线菌资源,其肠道菌群的结构与组成受年龄和性别的影响。  相似文献   

5.
The influence of carbon sources on bacterial community structure in the gut of the wood-feeding higher termite Nasutitermes takasagoensis was investigated. 16S rRNA gene sequencing and terminal-restriction fragment length polymorphism (T-RFLP) analyses revealed that the bacterial community structure changed markedly depending on feed components at the phylum level. Spirochaetes was predominant in the clone libraries from wood- and wood powder-fed termites, whereas Bacteroidetes was the largest group in the libraries from xylan-, cellobiose-, and glucose-fed termites, and Firmicutes was predominant in the library from xylose-fed termites. In addition, clones belonging to the phylum Termite Group I (TG1) were found in the library from xylose-fed termites. Our results indicate that the symbiotic relationship between termite and gut microorganisms is not very strong or stable over a short time, and that termite gut microbial community structures vary depending on components of the feeds.  相似文献   

6.
7.
Tian X  Cao L  Tan H  Han W  Chen M  Liu Y  Zhou S 《Microbial ecology》2007,53(4):700-707
A dual approach consisting of cultivation and molecular retrieval of actinobacterial 16S rRNA genes was used to characterize the diversity of actinobacterial community inhabiting interior of rice stems and roots. Streptomyces is the most frequently isolated genus from rice stems and roots. Forty-five clones chosen randomly among 250 clones in the 16S rRNA gene clone library from roots were affiliated with nine genera of actinobacteria and uncultured actinobacteria (Mycobacterium, Streptomyces, Micromonospora, Actinoplanes, Frankia, Dactylosporangium, Amycolatopsis, Corynebacterium, Rhodococcus, and uncultured actinobacterium). However, 33 clones from stems were affiliated with four genera and uncultured actinobacteria (Streptomyces, Mycobacterium, Nocardiodies, Janibacter, uncultured earthworm cast bacterium, uncultured earthworm intestine bacterium, and uncultured actinobacterium). Species similar to S. cyaneus were isolated from surface-sterilized roots and stems of rice and detected inside rice roots by culture-independent methods. Species similar to S. caviscabies, S. scabies, and S. turgidiscabies were simultaneously detected from the interior of rice stems by the culture-dependent and culture-independent methods. S. galilaeus was detected from the interior of rice stems and roots. These results indicated that some actinobacterial populations in rice stems were correlated with those in roots. Tian and Cao contributed equally to this work  相似文献   

8.
We developed eight highly variable microsatellite markers for the termite Nasutitermes corniger. Allele number per locus ranged from nine to 34, and expected heterozygosity from 0.45 to 0.94, in samples from seven sites in the former canal zone of Panama. The utility of these markers was assessed for five congeners varying in phylogenetic distance to N. corniger. The markers will be useful for fine‐scale examination of population and colony genetic structure in N. corniger and other closely related species.  相似文献   

9.
Nitrogen (15N) fixed by gut symbionts of the termite Nasutitermes corniger is assimilated and incorporated into termite tissues. Metabolic differences between soldier and worker castes are reflected in assimilation patterns: a greater proportion of the newly fixed nitrogen was in the bodies of workers but in the heads of soldiers. Newly fixed nitrogen is also transferred between workers and soldiers by trophallaxis. These studies confirm the 3:1 ratio assumed as the affinity of nitrogenase for acetylene relative to nitrogen in the acetylene-reduction method.  相似文献   

10.
Actinobacteria from special habitats are of interest due to their producing of bioactive compounds and diverse ecological functions. However, little is known of the diversity and functional traits of actinobacteria inhabiting coastal salt marsh soils. We assessed actinobacterial diversity from eight coastal salt marsh rhizosphere soils from Jiangsu Province, China, using culture-based and 16S rRNA gene high throughput sequencing (HTS) methods, in addition to evaluating their plant growth-promoting (PGP) traits of isolates. Actinobacterial sequences represented 2.8%–43.0% of rhizosphere bacterial communities, as determined by HTS technique. The actinobacteria community comprised 34 families and 79 genera. In addition, 196 actinobacterial isolates were obtained, of which 92 representative isolates were selected for further 16S rRNA gene sequencing and phylogenetic analysis. The 92 strains comprised seven suborders, 12 families, and 20 genera that included several potential novel species. All representative strains were tested for their ability of producing indole acetic acid (IAA), siderophores, 1-aminocyclopropane-1-carboxylate deaminase (ACCD), hydrolytic enzymes, and phosphate solubilization. Based on the presence of multiple PGP traits, two strains, Streptomyces sp. KLBMP S0051 and Micromonospora sp. KLBMP S0019 were selected for inoculation of wheat seeds grown under salt stress. Both strains promoted seed germination, and KLBMP S0019 significantly enhanced seedling growth under NaCl stress. Our study demonstrates that coastal salt marsh rhizosphere soils harbor a diverse reservoir of actinobacteria that are potential resources for the discovery of novel species and functions. Moreover, several of the isolates identified here are good candidates as PGP bacteria that may contribute to plant adaptions to saline soils.  相似文献   

11.
A termite maintains an anaerobic microbial community in its hindgut, which seems to be the minimum size of an anaerobic habitat. This microbial community consists of bacteria and various anaerobic flagellates, and it is established that termites are totally dependent on the microbes for the utilization of their food. The molecular phylogene-tic diversity of the intestinal microflora of a lower termite, Reticulitermes speratus, was examined by a strategy that does not rely on cultivation of the resident microorganisms. Small subunit ribosomal RNA (ssrRNA) genes were directly amplified from the mixed-population DNA of the termite gut by polymerase chain reaction (PCR) and clonally isolated. Most sequenced clones were phylogenetically affiliated with the four major groups of the domain Bacteria: the Proteobacteria group, the Spirochete group, the Bacteroides group, and the Low G + C gram-positive bacteria. The 16S rRNA sequence data show that the majority of the intestinal microflora of the termite consists of new species that are yet to be cultured. The phylogeny of a symbiotic methanogen inhabiting the gut of a lower termite (R. speratus) was analyzed without cultivation. The nucleotide sequence of the ssrDNA and the predicted amino acid sequence of the mcrA product were compared with those of the known methanogens. Both comparisons indicated that the termite symbiotic methanogen belonged to the order Methanobacteriales but was distinct from the known members of this order. The diversity of nitrogen-fixing organ-isms was also investigated without culturing the resident microorganisms. Fragments of the nifH gene, which encodes the dinitrogenase reductase, were directly amplified from the mixed-population DNA of the termite gut and were clonally isolated. The phylogenetic analysis of the nifH amino acid sequences showed that there was a remarkable diversity of nitrogenase genes in the termite gut. The molecular phylogeny of a symbiotic hypermastigote Trichonympha agilis (class Parabasalia; order Hypermastigida) in the hindgut of R. speratus was also examined by the same strategy. The whole-cell hybridization experiments indicated that the sequence originated from a large hypermastigote in the termite hindgut, Trichonympha agilis. According to the phylogenetic trees constructed, the hypermastigote represented one of the deepest branches of eukaryotes. The hypermastigote along with members of the order Trichomonadida formed a monophyletic lineage, indicating that the hypermastigote and trichomonads shared a recent common ancestry. Received: January 22, 1998 / Accepted: February 16, 1998  相似文献   

12.
A cultivation-based approach was employed to compare the culturable actinobacterial diversity associated with five marine sponge species (Craniella australiensis, Halichondria rugosa, Reniochalina sp., Sponge sp., and Stelletta tenuis). The phylogenetic affiliation of the actinobacterial isolates was assessed by 16S rDNA-RFLP analysis. A total of 181 actinobacterial strains were isolated using five different culture media (denoted as M1–M5). The type of medium exhibited significant effects on the number of actinobacteria recovered, with the highest number of isolates on M3 (63 isolates) and the lowest on M1 (12 isolates). The genera isolated were also different, with the recovery of three genera on M2 and M3, and only a single genus on M1. The number of actinobacteria isolated from the five sponge species was significantly different, with a count of 83, 36, 30, 17, and 15 isolates from S. tenuis, H. rugosa, Sponge sp., Reniochalina sp., and C. australiensis, respectively. M3 was the best isolation medium for recovery of actinobacteria from S. tenuis, H. rugosa, and Sponge sp., while no specific medium preference was observed for the recovery of actinobacteria from Reniochalina sp., and C. australiensis. The RFLP fingerprinting of 16S rDNA genes digested with HhaI revealed six different patterns, in which 16 representative 16S rDNAs were fully sequenced. Phylogenetic analysis indicated that 12 strains belong to the group Streptomyces, three strains belong to Pseudonocardia, and one strain belongs to Nocardia. Two strains C14 (from C. australiensis) and N13 (from Sponge sp.) have only 96.26% and 96.27% similarity to earlier published sequences, and are therefore potential candidates for new species. The highest diversity of three actinobacteria genera was obtained from Sponge sp., though the number of isolates was low. Two genera of actinobacteria, Streptomyces, and Pseudonocardia, were isolated from both S. tenuis and C. australiensis. Only the genus of Streptomyces was isolated from H. rugosa and Reniochalina sp. Sponge species have been demonstrated here to vary as sources of culturable actinobacterial diversity, and the methods for sampling such diversity presented may be useful for improved sampling of such diversity.  相似文献   

13.
Here we report the effects of starvation and insect age on the diversity of gut microbiota of adult desert locusts, Schistocerca gregaria, using denaturing gradient gel electrophoretic (DGGE) analysis of bacterial 16S rRNA genes. Sequencing of excised DGGE bands revealed the presence of only one potentially novel uncultured member of the Gammaproteobacteria in the guts of fed, starved, young or old locusts. Most of the 16S rRNA gene sequences were closely related to known cultured bacterial species. DGGE profiles suggested that bacterial diversity increased with insect age and did not provide evidence for a characteristic locust gut bacterial community. Starved insects are often more prone to disease, probably because they compromise on immune defence. However, the increased diversity of Gammaproteobacteria in starved locusts shown here may improve defence against enteric threats because of the role of gut bacteria in colonization resistance.  相似文献   

14.
15.
Abstract The establishment of symbiotic relationships with intestinal microorganisms enables termites to thrive on recalcitrant substrates such as cellulose and wood. A termite colony is composed of several different castes which have distinct feeding habits. The soldiers, for example, cannot feed by themselves and depend on workers, who feed them with digested or semi‐digested foods. To investigate the influence of feeding habits on the bacterial symbionts, a comparative study of gut bacteria between worker and soldier castes of the termite Coptotermes formosanus was conducted. The bacterial communities of both castes were investigated using denaturing gradient gel electrophoresis (DGGE) and clonal analysis of 16S ribosomal DNA (rDNA). Both methods indicated Bacteroidetes was the common predominant group; the common dominant phylotype was affiliated with a reported uncultured Bacteroidetes phylotype (BCf1–03). There were significant differences in Bacteroidetes and Spirochaetes between two castes. Compared to the gut bacteria of workers, those of soldiers were lower in abundance and diversity of Bacteroidetes and slightly higher in Spirochaetes. Two phylotypes (W8, W11) affiliated to Bacteroidetes and two (W26, W29) affiliated to Spirochaetes were exclusively found in the DGGE profile of the worker caste. Bacteroidetes are assumed to be involved in fermentation of sugars and nitrogenous compounds as well as degradation of uric acid. Spirochaetes are supposed to aid in the functions of acetogenesis and N2‐fixation. The different feeding habits between workers and soldiers of C. formosanus may explain the observed differences in the gut bacterial community.  相似文献   

16.
Phylogenetic diversity of termite gut spirochaetes   总被引:2,自引:0,他引:2  
A molecular phylogenetic analysis was done of not-yet-cultured spirochaetes inhabiting the gut of the termite, Reticulitermes flavipes (Kollar). Ninety-eight clones of near-full-length spirochaetal 16S rDNA genes were classified by ARDRA pattern and by partial sequencing. All clones grouped within the genus Treponema , and at least 21 new species of Treponema were recognized within R. flavipes alone. Analysis of 190 additional clones from guts of Coptotermes formosanus Shiraki and Zootermopsis angusticollis (Hagen), as well as published data on clones from Cryptotermes domesticus (Haviland), Mastotermes darwiniensis Froggatt, Nasutitermes lujae (Wasmann) and Reticulitermes speratus (Kolbe), revealed a similar level of novel treponemal phylogenetic diversity in these representatives of five of the seven termite families. None of the clones was closely related (i.e. all bore ≤ 91% sequence similarity) to any previously recognized treponeme. The data also revealed the existence of two major phylogenetic groups of treponemes: one containing all of the currently known isolates of Treponema and a large number of phylotypes from the human gingival crevice, but only a minority of the termite gut spirochaete clones; another containing the majority of termite spirochaete clones and two Spirochaeta ( S. caldaria and S. stenostrepta ), which, although free living, group within the genus Treponema on the basis of 16S rRNA sequence. Signature nucleotides that almost perfectly distinguished the latter group, herein referred to as the 'termite cluster', occurred at the following ( E. coli numbering) positions: 289-G · C-311; A at 812; and an inserted nucleotide at 1273. The emerging picture is that the long-recognized and striking morphological diversity of termite gut spirochaetes is paralleled by their phylogenetic diversity and may reflect substantial physiological diversity as well.  相似文献   

17.
A unique lineage of bacteria belonging to the order Bacteroidales was identified as an intracellular endosymbiont of the protist Pseudotrichonympha grassii (Parabasalia, Hypermastigea) in the gut of the termite Coptotermes formosanus. We identified the 16S rRNA, gyrB, elongation factor Tu, and groEL gene sequences in the endosymbiont and detected a very low level of sequence divergence (<0.9% of the nucleotides) in the endosymbiont population within and among protist cells. The Bacteroidales endosymbiont sequence was affiliated with a cluster comprising only sequences from termite gut bacteria and was not closely related to sequences identified for members of the Bacteroidales attached to the cell surfaces of other gut protists. Transmission electron microscopy showed that there were numerous rod-shaped bacteria in the cytoplasm of the host protist, and we detected the endosymbiont by fluorescence in situ hybridization (FISH) with an oligonucleotide probe specific for the 16S rRNA gene identified. Quantification of the abundance of the Bacteroidales endosymbiont by sequence-specific cleavage of rRNA with RNase H and FISH cell counting revealed, surprisingly, that the endosymbiont accounted for 82% of the total bacterial rRNA and 71% of the total bacterial cells in the gut community. The genetically nearly homogeneous endosymbionts of Pseudotrichonympha were very abundant in the gut symbiotic community of the termite.  相似文献   

18.
Two culture-independent methods, namely ribosomal DNA libraries and denaturing gradient gel electrophoresis (DGGE), were adopted to examine the microbial community of a Malaysian light crude oil. In this study, both 16S and 18S rDNAs were PCR-amplified from bulk DNA of crude oil samples, cloned, and sequenced. Analyses of restriction fragment length polymorphism (RFLP) and phylogenetics clustered the 16S and 18S rDNA sequences into seven and six groups, respectively. The ribosomal DNA sequences obtained showed sequence similarity between 90 to 100% to those available in the GenBank database. The closest relatives documented for the 16S rDNAs include member species of Thermoincola and Rhodopseudomonas, whereas the closest fungal relatives include Acremonium, Ceriporiopsis, Xeromyces, Lecythophora, and Candida. Others were affiliated to uncultured bacteria and uncultured ascomycete. The 16S rDNA library demonstrated predomination by a single uncultured bacterial type by >80% relative abundance. The predomination was confirmed by DGGE analysis.  相似文献   

19.
Phylogeny and the distribution of symbiotic bacteria in the mixed segment of the wood-eating termite Nasutitermes takasagoensis (Shiraki) were studied. Bacterial 16S rRNA genes (rDNA) were amplified from the mixed segment of the gut by PCR, and two kinds of sequences were identified. The phylogenetic tree was constructed by neighbor-joining and maximum parsimony methods to identify symbionts harbored in the mixed segment. They are classified as low-G+C-content gram-positive bacteria and are most closely related to the genus Clostridium. The distribution of these bacteria throughout the whole gut was examined by PCR using specific primers, which suggested that they are confined to the mixed segment despite the presence of bacteria throughout the gut. In situ hybridization indicated that the symbiotic bacteria were localized to the ectoperitrophic space between the midgut wall and the peritrophic membrane in the mixed segment. Electron microscopy revealed the close association between these bacteria and the mesenteric epithelium, suggesting that they have some interactions with the gut tissue of termites.  相似文献   

20.
The phylogenetic species richness of the bacteria in the gut of the termite Reticulitermes flavipes was examined using near full-length 16S rRNA gene sequencing and amplified rDNA restriction analysis (ARDRA). We amplified the genes by polymerase chain reaction (PCR) directly from a mixed population of termite gut bacteria and isolated them using cloning techniques. Sequence analysis of 42 clones identified a broad taxonomic range of ribotypes from six phyla within the domain Bacteria: Proteobacteria, Spirochaetes, Bacteroidetes, Firmicutes, Actinobacteria, and the recently proposed “Endomicrobia.” Analysis of the sequence data suggested the presence of a termite specific bacterial lineage within Bacteroidetes. The ARDRA data included 261 different ARDRA profiles of 512 clones analyzed. These data suggest the gut flora in R. flavipes is extremely diverse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号